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Figure 1: Initial, middle, and late stages of a guided five-point star simulation

Abstract

In this project, I formulate guided Eulerian fluid simulation as a convex opti-
mization problem and make a comparison between sparse least-squares and a
proximal algorithm as methods for solving it. Ultimately, I find that I am able to
successfully realize a guided simulation while maintaining qualities of realistic
fluid motion, where the balance between guided and natural motion is controlled by
a hyperparameter. I conclude that optimization provides an effective perspective for
simultaneously achieving both natural fluid simulation and artificial fluid guiding.

1 Introduction

Fluid simulation and convex optimization are both well-studied subjects with many applications. Here
I would like to use one in the context of the other; namely, I would like to use convex optimization to
perform not just fluid simulation, but guided fluid simulation. The setup is simple: given an initial
state and a target velocity field, I want the time-varying velocity field to stay close to the target field
while also exhibiting the kind of motion that is reminiscent of a real incompressible fluid.

In short, there are two objectives: one, respect the laws of fluid motion (the Navier-Stokes equations),
and two, maintain a guided flow by following the target velocity.

1.1 Motivation

The tendency of humanity is to control, enslave, redirect, and remake. It is not enough to observe our
environment; we must bend it to our will. We do this not only physically but virtually too. Can an
artist or animator be wholly satisfied with depicting a fluid as it is, rather than as it could be?

That being said, it is often difficult to realistically achieve targeted behavior. Many existing techniques
are either inefficient or ineffective in certain cases. For example, the easiest programmatic solution –
having an artist supply all of the forces in a vanilla interactive simulation – requires an incredible
amount of re-simulation and tuning over a series of time steps. The ideal solution is one which can be
performed near-automatically by computers, without any human input except for (1) a specification
of the desired velocity field, (2) hyperparameter settings, and (3) perhaps some touch-ups at the end.



Note that the difficulty of the problem stems from the fact that it has two objectives: realism and
guidance. It is easy enough to achieve each on its own, but challenging to satisfactorily balance them
both at the same time. A big motivation for using an optimization framework is that it provides an
obvious way to handle multiple goals and to control the tradeoff between each of them: just formulate
a problem with multiple weighted terms in the objective. Then, once the problem is set up, there are
many different approaches within the optimization world for solving it.

The best part is that in this case, we are able to formulate the problem as a convex optimization
problem (see section 2.1), making it even easier to solve, as local minima are also global minima.

1.2 Background

Eulerian fluid simulation revolves around solving the incompressible Navier-Stokes equations:

∂v

∂t
= −v · ∇v − 1

ρ
∇p+ µ∇2v + f

∇ · v = 0

with v being velocity, ρ being density, p being pressure, µ being kinematic viscosity, and f being
acceleration due to external forces. Basically, the first equation says that the acceleration of the fluid
at each fixed point in the grid is equal to the sum of advection, pressure, viscosity, and external force
(e.g. gravity) terms. The second equation says that the fluid’s velocity field should be divergence-free.

While I could spend a lot of time describing basic fluid simulation, that is not really the focus of this
project. For more details on interpreting and numerically solving Navier-Stokes, I refer readers to the
early papers on graphics-oriented fluid simulation ([1], [2], [3]). Note that since the 90s when those
papers were released, fluid simulation has experienced a significant amount of further development.

People have traditionally achieved guided, grid-based fluid simulation in a variety of ways. One
option is to utilize driving forces and gathering terms as per [4], but the resulting flows are not always
realistic. [5] uses gradient descent for guiding, but is slow due to having to a run an entire simulation
at each optimization step. [6] employs a variational approach which effectively upsamples an artist’s
low-resolution guidance, but still requires the artist to tune the simulation in low resolution and
struggles with inter-resolution differences. [7] introduces the general proximal method that I emulate.

1.3 Contributions

I have implemented a guided 2D fluid simulation program from an optimization perspective.

2 Problem Statement

2.1 Primal Formulation

I follow the setup from [7]:

minimize
v

‖G(v − vtarget)‖22 + ‖W(v − vcurrent)‖22
subject to ∇ · v = 0

where vtarget is the (user-specified) target velocity field, vcurrent is the current velocity field, G is a
Gaussian blur matrix, and W is a diagonal matrix of weights describing the resistance to guiding
at each location. v, vtarget, and vcurrent are each vectors ∈ R2wh (where w is width and h is height)
representing flattened 2D velocity fields. G and W are each sparse matrices ∈ R2wh×2wh.

Now, note that via finite differencing you can approximate the divergence at location (i, j) as d>u
where d = [1 −1 1 −1]> and u =

[
vxi+1j vxi−1j vyij+1 vyij−1

]>
.

Thus the primal problem can be rewritten as

minimize
v

‖G(v − vtarget)‖22 + ‖W(v − vcurrent)‖22
subject to Dv = 0
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where D is a sparse matrix containing a row for each 2D grid location, with the entries of d in the
appropriate slots. Finally, expanding the primal objective function, we obtain

minimize
v

1

2
v>Av + b>v + c

subject to Dv = 0

A = 2G>G+ 2W2

b = −2G>Gvtarget − 2W2vcurrent

c = v>targetG
>Gvtarget + v>currentW

2vcurrent

The objective function, being a standard-form quadratic, is clearly convex, and the feasible set of
divergence-free velocity fields is also convex (as per [8]). So the problem as a whole is convex.

2.2 Dual Formulation

The Lagrange dual problem (using the variables A, b, and c from before) is

maximize
ν

inf
v

(
1

2
v>Av + (b+D>ν)>v + c

)
When I evaluate the infimum in the Lagrange dual function by taking the gradient and setting it to 0,
I find that v = −A−1(b+D>ν). Substituting this back into the Lagrange dual problem, I obtain

maximize
ν

1

2

[
A−1(b+D>ν)

]>
(b+D>ν)− (b+D>ν)>A−1(b+D>ν) + c

=⇒ maximize
ν

− 1

2
(b+D>ν)>A−1(b+D>ν) + c

2.3 KKT Conditions

Again, I use the variables A and b as defined in the primal.

D>v∗ = 0

Av∗ + b+D>ν∗ = 0

3 Approach

At each time step, I use standard physical simulation techniques to create the “current" velocity field,
and then solve the aforementioned optimization problem to determine the final guided velocity.

The following subsections describe my two approaches for solving the optimization problem:

3.1 Least-Squares

Since the objective function f(v) is convex, its minimum is attained at the v for which∇f(v) = 0:

∇
(
1

2
v>Av + b>v + c

)
= 0

Av + b = 0

Av = −b

There is also the Dv = 0 constraint, making this a sparse least-squares problem
[
A
D

]
v =

[
−b
0

]
.

Thus I can solve it using SciPy’s sparse LSQR solver.
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3.2 Proximal Algorithm

I can also apply a proximal method ([9]), i.e. a general, efficient algorithm that can be used for solving
constrained, non-smooth optimization problems at scale.

Following [7], [9], and [10], the proximal operator of the quadratic objective function f is

proxf (q) = argmin
v

(
f(v) +

1

2
‖v − q‖2

)
= argmin

v

(
1

2
v>Av + b>v + c+

1

2
‖v − q‖2

)
= (A+ I)

−1
(q− b)

= vcurrent + (2G>G+ 2W2 + I)−1[q+ 2G>G(vtarget − vcurrent)− vcurrent]

I can use this in the primal-dual proximal method of [7] and [10] to solve the optimization problem
by maintaining three extra variables, x, y, and z (each with the same dimensionality as the velocity
field) and applying the following updates for some number of iterations during each fluid step:

x = x+ y − proxf (x+ y)

v = proxg(z− x)

y = 2v − z

z = v

where proxg can be computed as a pressure projection as per [11].

4 Results

Description URL
Initial velocity only, no per-step guiding https://gfycat.com/bouncytinyamurratsnake

Per-step guiding with sparse least-squares https://gfycat.com/hastyordinarycheetah

Per-step guiding with the proximal method https://gfycat.com/spitefulliquidambushbug

Table 1: Links to fluid simulation GIFs

In the above GIF examples, I attempt to guide the fluid to adopt and maintain a five-point star velocity.
As you can see from the first example, without per-step guiding the tendency of the fluid is to spread
out in a somewhat unpredictable way, even when the velocity is initialized to the target velocity. I
would argue that both the LSQR and proximal methods are successful at creating fluid-like guided
velocity fields (for example, they retain some of the “mushroom" effects from pressure projection).
In my implementation, the LSQR method is faster: for a 400 × 400 grid and identical initial and
target conditions, the LSQR method takes ∼0.6s per update where the proximal method takes ∼4.0s.

5 Conclusion and Future Work

I have created a 2D fluid simulation which can be guided using convex optimization. Since the
optimization problem is an equality-constrained quadratic minimization, it can be solved relatively
easily, flexibly, and satisfactorily, as I have heretofore demonstrated with both of the methods I tried.

There are many potential extensions to this project. For example, one could enhance the simulation
in ways that don’t relate to optimization (e.g. 3D, better rendering, support for more types of fluids),
experiment with other iterative solvers (e.g. conjugate gradient, ADMM), or use optimization with
deep learning1.

1e.g. by optimizing a network to map (current velocity, target velocity) onto the space of realistic (current
velocity, next velocity) pairs while also minimizing the difference between target velocity and next velocity
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