
KPCN Denoising for Monte Carlo Renderings
An Exploration of KPCNs as Applied to Individual Path-Traced Frames

Owen Jow

UC San Diego

owen@eng.ucsd.edu

Figure 1: I reimplemented [1] and [4] to denoise individual path-traced frames using kernel prediction.

ABSTRACT
In this project, I applied KPCNs (kernel-predicting convolutional

networks) as per [1] and [4] to denoise single path-traced frames.

To my knowledge, I have replicated most presented findings with

respect to direct prediction, kernel prediction, asymmetric loss, and

multi-scale denoising. Additionally, over the course of many train-

ing attempts, I investigated the effects of several hyperparameter,

architectural, or other changes that were not extensively discussed

in either of the two reference papers. This report touches upon these

different aspects of KPCN-based denoising methods, with the aim

of imparting information helpful for navigating the often-murky

field of hyperparameter and structural tuning in ML pipelines.

1 INTRODUCTION
In the years of late, computing subdomains have warped and de-

formed into increasingly nail-like entities under the hammer that

is deep learning. Even the holy grail of physically-based rendering,

Monte Carlo path tracing, has not been immune. The recent work

of [1], [2], and [4] has turned the state of the art of reconstruction

from few-sample path tracing into a collection of convolutional

networks which predict either (a) denoised pixels directly or (b)

local filtering kernels.

Here, I reimplement two of these papers (one an extension of

the other), namely the ones by Disney/Pixar relating to kernel

prediction. Although the more recent of these papers (KPAL) pro-

vides options for multiple path tracers and animated rendering

sequences, I do not have immediate access to these things and so

omit the associated modules (source-aware encoders and temporal

denoising) frommy implementation. Instead, I focus on themodules

relevant to single-frame denoising, in particular the single-frame

kernel-predicting denoiser (with or without asymmetric loss) and

the multiscale wrapper around this denoiser.

Following this path, I obtain results comparable to each paper’s

while also exploring many other facets of KPCN-based denoising

as described in Section 3.

2 METHOD
I denoise images using a specular KPCN and a diffuse KPCN, which

each take a path-traced color image along with auxiliary buffers

and predict a filtering kernel for every location (Figure 2). In order

to better remove low-frequency artifacts, I include the option of

denoising at multiple scales and blending the results. I also apply

an asymmetric loss for increased preservation of detail.

While searching for the best results, I of course tried several

data sampling/preprocessing strategies, network architectures, and

training tricks. In the following subsections, I describe what I think

of as my main denoising pipeline. For a condensed discussion of

findings from my exploration, see Section 3.

2.1 Data
As a machine learning method, KPCN-based denoising requires

large volumes of data for training. I used a dataset provided by Bako

et al. which provides path-traced data (renderings and auxiliary

feature buffers) for 1482 permutations of eight publicly available

scenes rendered using Tungsten at five different sampling rates:

128, 256, 512, 1024, and 8192 spp. In my experiments, I train using

128 and 256 spp renderings as inputs and 8192 spp renderings as

ground truth.

Since it is intractable to train with the full 1280 × 720 buffers, I

sample 500 65 × 65 patches from each image and its correspond-

ing feature buffers and use those during training. The sampling

is performed without replacement according to a PDF given by a

weighted sum of the color and normal variances, in order to obtain

a good distribution of informative patches (as opposed to, e.g., a

CSE 274 Fall 2018, w/ Prof. Ravi Ramamoorthi Final Report / Owen Jow

Figure 2: Predicted kernels for the highlighted region.

dataset full of patches which are of constant intensity when de-

noised). An example of the PDF and sampled patches can be seen

in Figure 3.

In all, the network inputs (Figure 4) consist of

• log(1 + color)
• x-gradients of color, normals, albedo, and depth

• y-gradients of color, normals, albedo, and depth

• Relative variances of color, normals, albedo, and depth

In the above, color is either the specular color or the irradiance,

depending on the network we’re using (see Section 2.2). The irradi-

ance is computed from the diffuse color by dividing out the albedo.

We also re-scale the depth to be in the range [0, 1].

This is a mixture of [1] and [4] network inputs; the idea to use

gradients and depth comes from [1], while the idea to use a log

transform of the irradiance and relative variance comes from [4].

Although [4] is the more recent paper, I found that my network

performed better when I used gradients as opposed to raw (or log

transforms of) auxiliary features as done in [4]. Presumably this is

because the gradients make salient parts of the feature buffers more

obvious; such seems to be the case for the gradients in Figure 4.

2.2 Architecture
For single-frame denoising, I use a 28-layer version of the architec-

ture from [4] (see Figure 5 for a diagram). It is fully convolutional

and composed mostly of residual blocks, each of which consists of

two 3× 3 convolutional layers wrapped in a residual connection. In

each residual block, I include batch normalization and dropout (dur-

ing training) after each convolutional layer. Neither paper mentions

this, but I found that it helped stabilize the training process (the

loss curves did not oscillate as drastically and seemed to converge

toward better minimums). The output of the network is a set of

21 × 21 kernels, one for each pixel.

I also tried the vanilla 9-layer convolutional network from [1],

which gave good results as well (Section 3.4.1).

As per [1], I have two networks: one for denoising diffuse data

and one for denoising specular data. Each uses the same architecture.

Thus, to denoise an image in full, I denoise diffuse and specular data

separately, post-process their results (inverting the log transforms

and the albedo divide), and finally add them together to form the

final denoised color image.

2.2.1 Multiscale Module. The multiscale module serves as a wrap-

per around the single-frame denoiser. To perform multiscale de-

noising, I progressively downsample the input image i1 by a factor

of 2 in each dimension using either average pooling or bicubic

interpolation to form a three-level image pyramid {i1, i2, i4}. The
auxiliary feature buffers are downsampled in the same way, and

the variances are divided by 4 each time because downsampling

effectively reduces the noise.

I then use the single-frame denoiser to denoise each image in the

pyramid, producing a set {i′
1
, i′
2
, i′
4
} of denoised images at different

scales. Next, I blend the results at adjacent scales according to a

trained scale compositor (Figure 6). The scale compositor predicts

a per-pixel α ∈ [0, 1] map via a six-layer convolutional network

and then applies it according to the following blending equation at

each pixel:

o′ = i′f + α
(
Ui′c − UDi

′
f

)
where if represents the denoised fine-scale image, ic represents the
denoised coarse-scale image, U represents a 2 × 2 nearest-neighbor

upsampling operator, and D represents a 2 × 2 average pooling

downsampling operator. o′ is the final denoised output at the finer

scale. This equation describes a replacement based on α of denoised

finer-scale low frequencies UDi′f with denoised coarser-scale low

frequencies Ui′c .
The main benefit of the multiscale module is that we can use

it in lieu of a very deep network to avoid low-frequency artifacts

in denoised images. Normally, we would require a large effective

receptive field or filter footprint to properly denoise low frequencies;

however, increasing depth and/or filter sizes in the network can be

expensive. Multiscale denoising serves as a cheap way to obtain a

large spatial support and eliminate persistent low-frequency noise.

When training, the weights of the single-frame denoiser are

frozen and only the scale composition module is updated.

The effect of the multiscale module can be seen in Section 4.1.

2.3 Training
I optimize the networks according to an asymmetric loss based

on the symmetric mean absolute percentage error (SMAPE) men-

tioned in [4], which is supposed to be stabler for HDR images and

empirically gave better-looking results than the L1 loss of [1].

SMAPE is defined as

ℓ(out, gt) = mean

(
|out − gt|

|out| + |gt| + 0.01

)
where the mean is taken over all pixels and channels.

2.3.1 Asymmetric Loss. The asymmetric loss at some pixel and

channel is defined as

ℓ′(in, out, gt, λ) =

ℓ(out, gt) · (1 + (λ − 1)H ((out − gt) (gt − in)))

whereH is the Heaviside step function (1 if its argument is positive,

0 otherwise). The slope parameter λ is a positive real number which

is greater than or equal to 1.

KPCN Denoising for Monte Carlo Renderings CSE 274 Fall 2018, w/ Prof. Ravi Ramamoorthi

Figure 3: An illustration of sampling coverage. From left to right: sampling PDF, sampled patches, overlaid sampled patches.

Figure 4: An example of diffuse network inputs used during training. From left to right: irradiance (1), x-gradients for irradiance, normals,
albedo, and depth (4), y-gradients for irradiance, normals, albedo, and depth (4), relative variances for irradiance, normals, albedo, and depth (4).

The rightmost patch is the ground truth irradiance, which is naturally only provided when training.

Figure 5: Single-frame KPCN. Not pictured: (a) the input, which consists of the color image and a collection of feature buffers, and (b)

per-pixel filter application (weighted reconstruction), which happens after the kernel is predicted via the softmax at the end.

Figure 6: Scale weight (α) prediction module. Not pictured: (a) the input, which consists of a concatenated fine-scale denoised image and an

upsampled coarse-scale denoised image, and (b) blending, which occurs via the equation presented in Section 2.2.1 after α has been predicted.

The asymmetric loss tells the network to prefer noisier (input-

side) output to a degree characterized by λ. This is desirable in some

cases because noise corresponds to detail, and some parts of the

image might look better if they are slightly noisy as opposed to

slightly over-blurred.

According to [4], the authors train a special loss specialization

module which sits right before the end of the network and allows

per-pixel λ maps to be specified when only a small amount of

computation remains. The point of this is that λ can be adjusted on

a spatially varying basis and applied at an interactive rate. However,

I wasn’t expecting to have any artists use my system and did not

implement per-pixel λ specification primarily because I didn’t have

time to construct the necessary inference interface. Instead, I simply

trained the entire image on a uniform λ parameter and offered no

option to change it during inference (meaning a loss specialization

module was not required). The effect of the asymmetric loss can be

inspected in Section 4.2.

2.3.2 Other Notes. For the most part, I trained with a batch size

of 12, an initial (exponentially decaying) learning rate of 1e-4, and

CSE 274 Fall 2018, w/ Prof. Ravi Ramamoorthi Final Report / Owen Jow

a dropout keep probability of 0.7. I also utilized gradient clipping,

which turned out to be important for stability’s sake.

Like [1], the diffuse and specular networks were trained indepen-

dently and then fine-tuned as part of a cohesive denoising system

(i.e. supervised on the final post-processed color output) with an ini-

tial learning rate of 1e-6. In the initial phase, I trained each network

for about one epoch (60000 iterations) due to time constraints, al-

though the loss seemed to be close to converging. In the fine-tuning

stage, I trained for about a sixth of an epoch (10000 iterations).

I used TensorFlow as my deep learning framework, and Adam

as my optimization algorithm.

3 INVESTIGATIONS
In this section, I’ll describemy observations with respect to different

components of the KPCN implementation.

3.1 Multiscale Denoising
In principle multiscale denoising sounds fantastic, but I had a diffi-

cult time attaining particularly improved results using the method

described in the paper. The first problem I hit was that the α map

seemed to tend toward 0 during training, signifying “instead of

blending, just use the denoised fine image" and making the results

essentially the same as those without multiscale denoising. To get

around this, I added an extra weighted term to the loss which pro-

vided a linear error signal when the mean α value was less than

0.5.

ℓnew = ℓ + γ ·max{0.5 − mean(α), 0}

In practice, I usually set γ to 0.01. This extra error term was incor-

porated twice, once for each application of the scale compositor

to a pair of adjacent scales. The reason for setting a threshold at

0.5 is a hypothesis on my part that on average the blending should

be able to use equal amounts of the coarse and fine scales, and a

quick visual inspection of results for alternative threshold settings

suggested that other thresholds induced worse outcomes. Moreover,

with this setting I observed predicted α maps that resembled the

one shown in [4].

3.1.1 Kernel-Predicting Scale Compositor. In my quest to construct

a decent multiscale denoising module, I did a quick literature search

and, finding [3], decided to try adopting some of its ideas for my

own purposes. It also performs denoising using an image pyramid.

For each pair of adjacent scalings {if , ic } in the pyramid, Choi et

al. use a learned filter to upsample ic (the denoised output of the

coarser layer, or a raw image at the coarsest scale) and a learned

filter to denoise if . Then they sum the upsampled and denoised

components to produce the final denoised output of the pyramid

level. Accordingly, the filters also implicitly perform blending.

As compared to the approach of Vogels et al., [3] proposes

more levels of the image pyramid (although this is flexible), selects

(“learns") per-pixel filters from a linear FIR filter bank according

to local structure analysis, uses learned filters for upsampling, and

operates on raw noisy inputs as opposed to having access to KPCN-

denoised outputs at different scales. They also denoise and blend

independently at each scale, downsample with bicubic interpolation

for increased noise reduction, and supervise outputs at all scales

with appropriately downsampled versions of the reference image.

I easily adopted the latter two ideas. Meanwhile, I assumed that

KPCN denoising would already provide fine-scale denoising func-

tionality and that I would just have to perform upsampling and

blending of each coarser scale. For this, I tried using kernel predic-

tion to predict per-pixel 21 × 21 upsampling/blending kernels and

then adding the result to the denoised finer-scale image at each

stage of the multiscale processing, i.e.

Ui′c [k] =
*.
,

∑
j ∈F

f[j]ic [k/2 + j]
+/
-

where Ui′c [k] is pixel k in the denoised output at the finer level, F
is the set of valid filter offsets, and f is the upsampling/blending

filter for the coarser image.

To blend, we apply the same α-blending process as before. α is

predicted by a separate head of the network, at the same level as

the one that predicts the kernels.

There is one confounding factor in this experiment in that my

extended network is more complex than the one in [4] and thus

has some advantage in representational capacity. In an attempt to

facilitate comparison, I use the same scale composition network as

before with the only exception being the extra kernel-predicting

head. Thus, the only difference is in the upsampling.

Results-wise, I haven’t seen any noticeable benefit (or deteri-

oration) from this method. However, it seems to train to near-

convergence almost instantaneously (in a couple hundred itera-

tions) and exhibits a smoother loss curve when I let it run for

longer. In theory, this extension removes some of the limitations of

the single-frame denoiser, since there is the option to perform addi-

tional filtering with the “upsampling" kernels. As evidenced by my

observations, it may also enjoy something of the increased conver-

gence rates associated with kernel prediction that were discussed

in [4].

3.2 Asymmetric Loss
Again, I train with a constant asymmetric loss slope over all spatial

locations. As expected, this makes the output generally more (or

less) noisy everywhere as I increase (or decrease) the value of the

slope parameter.

For the most part, I set λ = 2 because it appeared to provide a

more visually pleasing balance of blurriness and detail as compared

to λ = 1 and λ = 8. However, I only ran this check on partially-

trained networkswithoutmulti-scale denoising, andwas comparing

the output to the 8192 spp renderings, which definitely retain some

noise and might have made e.g. λ = 2 results look undeservedly

better than those of λ = 1 at times..

3.3 Data
3.3.1 Preprocessing. Unlike [1], I take the log transform of both

the irradiance and specular color data. I observed better results

from this than using raw irradiance as [1] suggests, perhaps due

to the data’s high dynamic range. It also has the benefit of making

single-network training (Section 3.4.5) more sensible, since the

same transform is performed on both color inputs.

3.3.2 Iterative Error-Based Sampling. Although I didn’t really get

the chance to evaluate it, I also added the ability to iteratively

KPCN Denoising for Monte Carlo Renderings CSE 274 Fall 2018, w/ Prof. Ravi Ramamoorthi

sample more patches from the dataset according to the denoiser’s

current error on each image. In theory, this could help build up a

better and more educational distribution of data for the network so

that it can learn to handle the sampling patterns it has trouble with.

This is similar to the idea of RL methods such as DAgger (dataset

aggregation).

3.4 Architecture
3.4.1 KPCN vs. KPAL Architecture. By “KPCN architecture," I mean

the vanilla 9-layer CNN; by “KPAL architecture," I mean the deep

residual CNN. Trained to near-convergence, my observation is that

these networks produce visually similar outputs, but the KPAL

architecture exhibits error values which are just a little bit lower

(on the order of 1e-4 or 1e-5 for MrSE and DSSIM).

3.4.2 KPCN vs. DPCN. In agreement with [1], I found that DPCN

converged more slowly than KPCN during training but ultimately

produced results of similar, perhaps slightly lower quality.

3.4.3 Network Depth. Generally, deeper residual networks seem
to perform marginally better but require more memory and more

time to execute. One benefit of having a deeper network is that the

effective receptive field is larger, meaning low frequencies can be

denoised more easily.

3.4.4 Batch Normalization. I found batch normalization useful for

training the deep residual network architecture from [4]. In partic-

ular, it aided me in avoiding NaNs, which makes sense because by

normalizing activations throughout the network batch normaliza-

tion helps stop things from exploding or vanishing.

3.4.5 Single Network. In the style of [4], I tried using a single net-

work to denoise both diffuse and specular data. It worked, seemingly

as well as individual diffuse and specular networks if the validation

loss is anything to go by. The main advantages of having a single

denoising network are probably computational savings and better

data efficiency during training, along with memory savings during

inference.

3.5 Training
3.5.1 Batch Size. From limited experiments, it seemed that higher

batch sizes were better for training. However, due to memory limita-

tions ∼24 was the highest batch size my computer could reasonably

handle.

3.5.2 Learning Rate. Although Bako et al. report a learning rate of

1e-5, I found that the slightly more aggressive learning rate of 1e-4

gave rise to better and swifter training. I attribute this mostly to

differences between the Tungsten-rendered scenes I was using and

the paper’s production data.

4 RESULTS
See Figures 7-14 for a collection of results from the single-frame

component of my denoising pipeline. For each denoised image, I

have also computed the MSE (mean squared error), MrSE (mean

relative squared error), and DSSIM (structural dissimilarity) to fa-

cilitate comparison with other works’ results.

Since the 8192 spp (reference) renderings still contain noise, in

many cases the denoised output actually looks better in a no-noise

sense because it gets rid of noise that the reference images still

possess. This is evident from many regions in the included figures.

On the other hand, there is some loss of detail at times.

4.1 Multiscale Denoising
See Figures 15 and 16 for an illustration of the effect of multiscale

denoising on a shallower 10-layer network. Note that I made the

network shallower so that the multiscale noise removal would be

more pronounced. Again, multiscale denoising helps remove low-

frequency noise in a less expensive fashion than deepening the

network at a single scale.

While I saw a reduction in low-frequency noise from multiscale

denoising, the results were not exactly comparable to those given

by a deeper residual network. However, this might in some ways

be a limitation of the underlying denoiser – I only trained each

10-layer network for 16000 iterations (about a quarter of an epoch).

4.2 Asymmetric Loss
See Figure 17 for a comparison of the effects of different settings of

λ. As previously stated, higher values of λ increase the network’s

propensity toward detail preservation.

5 CONCLUSION
In this project, I implemented a KPCN denoising pipeline according

to [1] and [4] with the exception of a few modules that I could not

use. On top of the base KPCNmethod from [1], I included multiscale

denoising and optimization based on asymmetric loss functions

(both from [4]), which allowed for better low-frequency denoising

and/or detail preservation. Along the way, I also explored a number

of architectural and training settings which I described to some

degree in this report. Ultimately, I found the quality of results to

be as promised and conclude that kernel prediction is a veritably

effective means of denoising Monte Carlo renderings.

REFERENCES
[1] Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,

Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-

lutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2017) 36, 4, Article 97 (2017), 97:1–97:14 pages.
https://doi.org/10.1145/3072959.3073708

[2] Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco

Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive

Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising

Autoencoder. ACM Trans. Graph. 36, 4, Article 98 (July 2017), 12 pages. https:

//doi.org/10.1145/3072959.3073601

[3] Sungjoon Choi, John Isidoro, Pascal Getreuer, and Peyman Milanfar. 2018. Fast,

Trainable, Multiscale Denoising. CoRR abs/1802.06130 (2018). arXiv:1802.06130

http://arxiv.org/abs/1802.06130

[4] Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill,

David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with Kernel Prediction

and Asymmetric Loss Functions. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2018) 37, 4, Article 124 (2018), 124:1–124:15 pages. https://doi.org/10.

1145/3197517.3201388

https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/3072959.3073601
http://arxiv.org/abs/1802.06130
http://arxiv.org/abs/1802.06130
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.1145/3197517.3201388

CSE 274 Fall 2018, w/ Prof. Ravi Ramamoorthi Final Report / Owen Jow

Figure 7: From left to right: in (128 spp, validation set), out, reference (8192 spp). MSE: 0.00561 / MrSE: 0.00313 / DSSIM: 0.000327

Figure 8: From left to right: in (128 spp, validation set), out, reference (8192 spp). MSE: 0.00792 / MrSE: 0.00541 / DSSIM: 0.00476

Figure 9: From left to right: in (128 spp, validation set), out, reference (8192 spp). MSE: 0.000220 / MrSE: 0.00209 / DSSIM: 0.000169

Figure 10: From left to right: in (128 spp, validation set), out, reference (8192 spp). MSE: 0.000340 / MrSE: 0.00162 / DSSIM: 0.00311

Figure 11: From left to right: in (128 spp, validation set), out, reference (8192 spp). MSE: 0.000824 / MrSE: 0.00420 / DSSIM: 0.00557

KPCN Denoising for Monte Carlo Renderings CSE 274 Fall 2018, w/ Prof. Ravi Ramamoorthi

Figure 12: From left to right: in (128 spp, validation set), out, reference (8192 spp). MSE: 0.000922 / MrSE: 0.00310 / DSSIM: 0.000536

Figure 13: From left to right: in (128 spp, validation set), out, reference (8192 spp). MSE: 0.0137 / MrSE: 0.000990 / DSSIM: 0.0000289

Figure 14: From left to right: in (128 spp, validation set), out, reference (8192 spp). MSE: 0.0000630 / MrSE: 0.00237 / DSSIM: 0.000597

Figure 15: From left to right: without multiscale denoising, with multiscale denoising, relative absolute diff between the two. With multiscale

compositing, most of the low-frequency noise on the walls (and everywhere else) goes away. The base single-frame denoiser is the same in

both cases; the only difference is that in the multiscale setting we operate at multiple scales and blend the results.

CSE 274 Fall 2018, w/ Prof. Ravi Ramamoorthi Final Report / Owen Jow

Figure 16: Predicted α maps for the multiscale processing in Figure 15. From left to right: diffuse first-level α , diffuse second-level α , specular
first-level α , specular second-level α . The brightness of α describes how much weight we’re giving to the coarse-scale values in the blending

process. Not coincidentally, the α maps somewhat resemble the lower-frequency noise in the scene.

Figure 17: An image from the validation set, denoised by three networks which have been trained using λ = 1, λ = 8, and λ = 20. As λ
increases, preference for noise over blurriness increases as well. It might be difficult to see at this scale, but there is a distinct increase in

residual noise between adjacent outputs. It is particularly noticeable (at least at full size) around the yellowish highlight on the top right, on

the surface of the light fixture in the middle, and on the walls in the bottom right corner of the image. The greenish images above the λ = 8

and λ = 20 outputs are the corresponding outputs’ relative absolute diffs with the λ = 1 image, provided for convenience of comparison.

	Abstract
	1 Introduction
	2 Method
	2.1 Data
	2.2 Architecture
	2.3 Training

	3 Investigations
	3.1 Multiscale Denoising
	3.2 Asymmetric Loss
	3.3 Data
	3.4 Architecture
	3.5 Training
	3.6 RTX

	4 Results
	4.1 Multiscale Denoising
	4.2 Asymmetric Loss

	5 Conclusion
	References

