CSE 152 Section 7
HW3: Photometric Stereo and Optical Flow

May 20, 2019

Owen Jow

[1a] Lambertian Photometric Stereo

Input: Output:
images and associated lighting information normals, albedo, depth

light source direction: [0, 0, 1]" light source direction: [0.2, 0, 1]"

Photometric

n - b

light source direction: [-0.2, 0, 1]7 light source direction: [0, 0.2, 1]"

[1a] Assumptions

height

Image
plane

direction
of projection

> 4

image source: Forsyth and Ponce

Orthographic camera model:
(X, y, z) projects to (x, y) — our goal will be
to recover the height/depth map z = f(x, y)

Distant lighting:
treat every pixel in one image as sharing the
same lighting direction/intensity

Static scene/viewpoint:
(X, y) in one image corresponds to (x, y) in
all of the other images

[1a]l Assumptions, cont. (Lambertian) gt o

reflected

mys
e Lambertian surface:
surface

assume that the surface being imaged is Lambertian,
i.e. at any point on the surface, there is equal reflectance in all directions

|igh“' ray
6(%, y) - [a(xa y) H(ZC, y)] - S
reflected
— b(gg’y) .S rays.
. . . surface
e(x,y) intensity at pixel (x, y) (known)
a(x,y) albedo at the point on the surface corresponding to (x, y) (unknown) -
ight ray
n(x, y) unit normal at the point on the surface corresponding to (x,y) (unknown)
s unit direction to the light, scaled by the intensity of the light (known) refiected
fﬂyS

surface

TUMOIg SUABAA :22.n0s abeuwl

http://learnwebgl.brown37.net/09_lights/lights_diffuse.html

[1a] Solving for b at Each Pixel

b is a 3-vector, so we need at least three equations/images. Let's say we have n.

_61— _Sl N n - n
. . 1=100,0,1]" =[0.2,0, 1]" 0,0.2,1]"
€ | s, - b el =1]
61 e = -
— b -1
> | b=(STs) "sTe
e —— By linear least squares
S = w e (see lecture)

e = S b albedo a = ||b||
N == b
nxl nx3 3x1 normal n =

b

[1a]l n Encodes the Partial Derivatives of Depth

Note: this uses a left-handed coordinate system, whereas lecture uses a right-handed one.

0 1

n = normalized 1 X 0
of(x,y) of(x,y)

oy ox

(x/ Yl :F('X / Y)) _ 1 aféxyy)
B 2
e Je) () |
(x,y) y
y 8f(£l),y) _ _E
% . Ox n3
8f(£[7,y) - _@
8y B ns

[1a] Simple Scanline Integration 1

Once we have the partial derivatives, we can integrate to get depth.

o
B Initialize the top-left corner of the height map to 0

[1a] Simple Scanline Integration 2

Once we have the partial derivatives, we can integrate to get depth.

Initialize the top-left corner of the height map to O

-3_.5(1,0) (
4 - -

Heo For each pixel in the leftmost column [except (0, 0)]:
)5 - - -

500 (height = height of above pixel - of/dy

-g-fyu,o) ¢

-g—ch.o)g

=< (6,0)

2y

..2!(7,0) C

-;-izts.o)c . 25 :

500 Why sbtmct 2 ang 2 2 Uikeuise, pass =51 and -2

B 00 (Y SRR o to the Horn integration subrovtine.

"

-gfy(u,o)c g-o%:% r)x' _g_i and g—f are in the original coordinate system

2

3}0'0)(syt > 2. “take o small step leFfuard,

'5?03'0)6 Y vd-’recﬁans of 0% how much § goes wp"

-2 440y J ; ; -9 . Mtake Il ightward,

2%y ¢ B integration - 5 ke y: ujlmf ;tg :g"

[+he Hhird axis points out
of the page at the viewer]

[1a] Simple Scanline Integration 3

Once we have the partial derivatives, we can integrate to get depth.

%

dsis
b 2'!:.%
dsis
NEC
B
i
dsi
iz

% %
29X 09X 2%
rNCNON

%
N
i

VWV V VvV V V V V.V V.V V V VvV Vv

Initialize the top-left corner of the height map to O

For each pixel in the leftmost column [except (O, O)]:
height = height of above pixel - 0f/dy

For each pixel (except the leftmost) in each row:
height = height of pixel to the left - 0f/0x

4 f o
o oF o Likewise, pass - and ==
Why Subleect ox and o ° [ﬁ; the Horn integration 5ubrov>;'ine.
g;%:% r)x' -g—i and g—f are in the original coordinate system
system ¢ > 2. ke a snal shp lefpuard,
| directons of 0 how much § goes vp
integration - - . “take a small step rightward,

X

[+he Hhird axis points out
of the page at the viewer]

9 " how wuch § goes vp

[1a] The Mask Parameter

—-
convert to threshold
grayscale,
average,

normalize*

|||||||||\‘|||||||||

e 1sforlocations to use during integration
e Os for locations to ignore during integration
e Unnecessary for 1a, but can use to filter out the background in 1b

*(img - img.min()) / (img.max() - img.min())

[1b] Applicability of the Lambertian Equation

The Lambertian equation does not apply for

e shadowed regions, where the view of the light is blocked
e specularities, which arise as a result of a different relationship

If we perform photometric stereo on such locations, we’'ll end up with noisy/pointy/bumpy artifacts.

image source: Prof. Kriegman'’s lecture slides

[1b] Simple Shadow/Specularity Removal

|dentify shadowed/specular locations based on brightness. Then, either...

1. ..clamp each associated brightness to a threshold value.
2. ..set each associated brightness to the median of a sizable surrounding window.

Do this before solving for b. You should be able to mitigate the artifact(s) to some degree.

image source: Prof. Kriegman'’s lecture slides

[2a] Optical Flow 1

Estimate the apparent motion of each pixel from frame A to frame B.

frame A

[2a] Optical Flow 2

Estimate the apparent motion of each pixel from frame A to frame B.

O\o

S

frame B + optical flow

[2a] The Brightness Constancy Equation

Assumption 1: the brightness/color of each pixel remains constant as it moves.
I(z+ Az,y + Ay, t + At) = I(z,y,t)
Assumption 2: pixels don’t move too far between frames. Linearizing via Taylor expansion:

oI oI oI
.5,)-I—Axa——l—Ayay Ata I(&; 9 1)
81 81 oI _

Az 0T Ay ol 0OI

=0

— —+ +
At Or Atoy Ot
Goal: solve for u, v at every pixel.
UI:B a0 UIy + It =0 Can compute Ix, ly, It from the images.

[2a] The Lucas-Kanade Method

Problem: one equation, two unknowns.
Assumption 3: flow is constant in the neighborhood around each pixel.

— Get one equation for every point in a window around each pixel.

[Um)l (Lm} H [—um} (L) (B)h]" [(s (L)x (Bh]" [-(h
: u = > . . =
(Im)n (Iy)n ’ _(It)n IinearleaStsquares (Im)n (Iy')n _(Ix)n (Iy)n ° (Im)n (Iy)n _(It)n
nx2 ?x,-; nx1 - 1,2 I = LI
(Z LI, %y]) o= 2 [_Izlj
Tz, yeW - = T, yeW
~ ~ e
232 2x1 2%

the second moment
matrix strikes again

[2a] Notes

e Use the pseudoinverse to solve for [u, v]T

u] E &L L
HR R A N R B

z,ycW T : pseudoinverse

e Run this for every pixel (loops are fine)
e Make sure you compute the y-gradient with respect to an upward axis
o If you use np.gradient to compute the image gradients, negate the y-gradient you get back

[3b] RANSAC for Estimating the Focus of Expansion

Idea: repeatedly

Sample two flow vectors
Estimate the focus of expansion as their intersection
Check the consistency of the estimate across all flow vectors

oo, §\\ / = sampled vectors
= inlier vectors

= ovtlier vectors
WW\

INLIER RADIVS

[3b] Ray-Ray Intersection

.Q

-
- \
s
-

p~- Sl W < ENE B

(v;,v,)

e Solve for tl and t2. Derivation of the exact solution is left as an exercise. :)
e Note that there are other ways to compute intersections. Use whichever method you like.

[3b] Distance from a Point to a Ray

When checking consistency, you'll need to compute the perpendicular distance from
your estimated focus of expansion to each of the rays (or to some subset of them).

(a-p)~((a-p)'m)n
((a—p)-m)n

(0, 0)

image source: Wikipedia

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line#Vector_formulation
https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line#Vector_formulation

=
4

\

7

- —

!
- .
, t t 7T
[3b] Example Results S“ENREREL. XIS
$ 0 ¥ 7 7 7/ TR . D
_ Vbt A / ~% . .
My parameters: N e -
| I) ’ g ’ ¥ > - -
Distance threshold 100 100 : : ' .
1Y ” o -
Number of iterations 100 Y ‘ : : .
Random seed 15 150 =

—4

My bestInliersNumList plot:

€20 200 c
580 |

250
560

0 50 100 150 200

540

Estimated focus of expansion is (y, x) = (137, 107)
520 =

0 20 40 60 80 100 Flow vector at that location is (u, v) (0.174968, 0.094821)

JJed|jeq sawes ayy ul buiyyowos 396 03 A1y 3snf ‘synsal 9sayy Ajpoexa aAey 0} pasau ON

