CSE 152 Section 3 **Review of Filters and Frequencies**

October 19, 2018

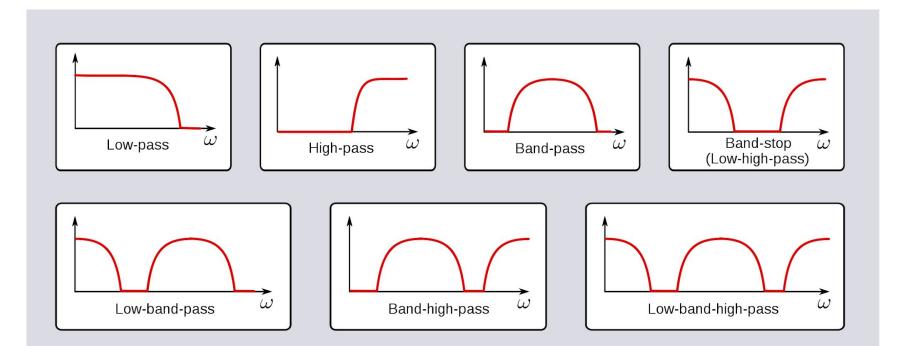
Owen Jow

What is a filter?

What comes to mind?

A device that lets only some of its inputs through

A process that lets only some of its inputs through



A process that lets some scalings of its inputs through

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1 9

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

and so transforms content

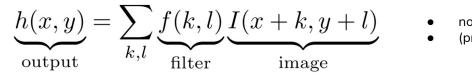
What does a linear filter do to an image?

Hint: why is it called a linear filter?

Replace each pixel with a linear combination of values in its neighborhood.

Replace each pixel with a linear combination of values in its neighborhood.

Correlation



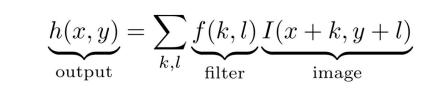
- not commutative or associative
- (preferably) use for measuring similarity

Replace each pixel with a linear combination of values in its neighborhood.

Correlation $\underbrace{h(x,y)}_{\text{output}} = \sum_{k,l} \underbrace{f(k,l)}_{\text{filter}} \underbrace{I(x+k,y+l)}_{\text{image}} \quad \text{not commutative or associative}_{\text{(preferably) use for measuring similarity}}$ $\underbrace{h(x,y)}_{\text{output}} = \sum_{k,l} \underbrace{f(k,l)}_{\text{filter}} \underbrace{I(x-k,y-l)}_{\text{image}} \quad \text{ecommutative and associative}_{\text{(preferably) use for filtering}}$

Replace each pixel with a linear combination of values in its neighborhood.

Correlation



- not commutative or associative
- (preferably) use for measuring similarity

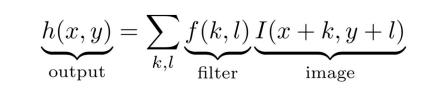
Convolution

$$\underbrace{h(x,y)}_{\text{output}} = \sum_{k,l} \underbrace{f(k,l)}_{\text{filter}} \underbrace{I(x-k,y-l)}_{\text{image}}$$

- commutative and associative
- (preferably) use for filtering
- "flip filter horizontally and vertically"

Replace each pixel with a linear combination of values in its neighborhood.

Correlation



- not commutative or associative
- (preferably) use for measuring similarity

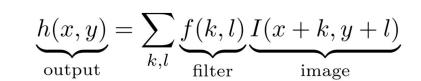
Convolution

$$\underbrace{h(x,y)}_{\text{output}} = \sum_{k,l} \underbrace{f(k,l)}_{\text{filter}} \underbrace{I(x-k,y-l)}_{\text{image}}$$

- commutative and associative
- (preferably) use for filtering
- "flip filter horizontally and vertically"
- denoted h = f * l

Replace each pixel with a linear combination of values in its neighborhood.

Correlation



- not commutative or associative
- (preferably) use for measuring similarity

Convolution

$$\underbrace{h(x,y)}_{\text{output}} = \sum_{k,l} \underbrace{f(k,l)}_{\text{filter}} \underbrace{I(x-k,y-l)}_{\text{image}}$$

- commutative and associative
- (preferably) use for filtering
- "flip filter horizontally and vertically"
- denoted h = f * l
- btw, k, *l* defined w.r.t. center of kernel

Why do we care about associativity?

Why do we care about associativity?

Associativity means that f * (g * I) = (f * g) * I.

If we want to apply multiple filters, we can pre-convolve them and use (then reuse) them as a single filter!

Properties of Linear Filters

• They obey the superposition principle.

 $f * (\alpha I + J) = \alpha (f * I) + f * J$

Properties of Linear Filters

- They obey the superposition principle. $f * (\alpha I + J) = \alpha (f * I) + f * J$
- They are shift-invariant.
 - f * shifted(I) = shifted(f * I)

"we can shift the image to the left by one pixel, then filter – or we can filter, then shift the result to the left by one pixel"

Properties of Linear Filters

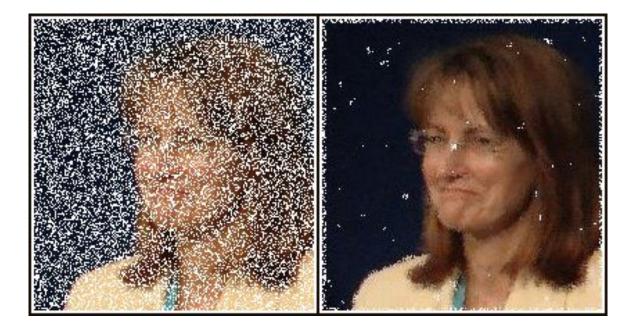
- They obey the superposition principle.
 f * (αI + J) = α(f * I) + f * J
- They are shift-invariant.
 - f * shifted(I) = shifted(f * I)

"we perform the same operation no matter where we are"

Filtering Results

sharpening via **unsharp filtering**

Filtering Results

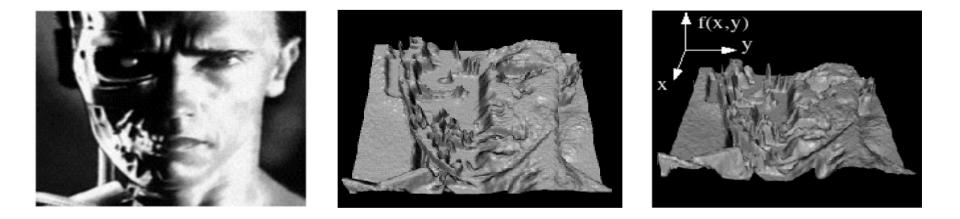


denoising via **median filtering**

(nonlinear)

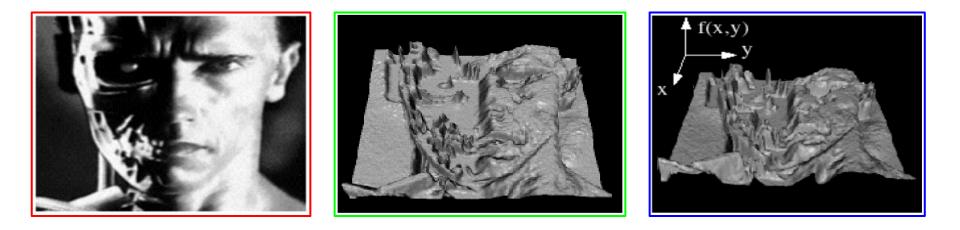
An image is a function f(x, y)

It is a mapping from pixel locations $\in \mathbb{R}^2$ to intensities $\in \mathbb{R}$.



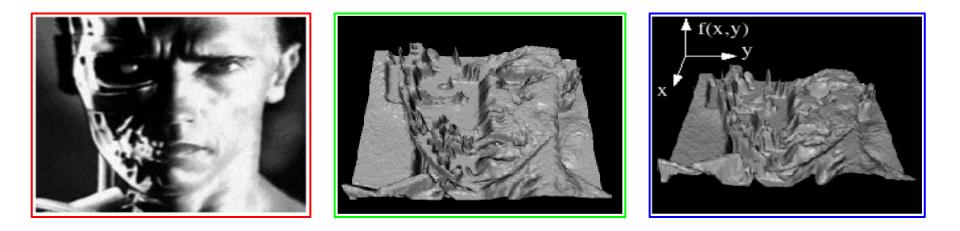
An image is a function f(x, y)

A color image is a mapping from pixel locations $\in \mathbb{R}^2$ to RGB intensities $\in \mathbb{R}^3$.



An image is a signal f(x, y)

In the case of digital images, we discretely sample an underlying continuous function.



So what we're really doing...

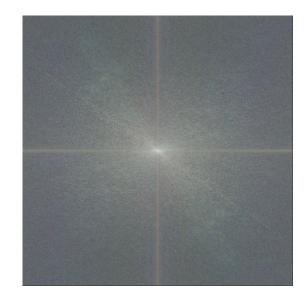
... is signal processing

image source: Daniel Sierra

Traditionally, we think of them as they exist in the spatial domain.

Traditionally, we think of them as they exist in the spatial domain.

But signal processing gives us a new way to think about things...



Spatial Domain

Frequency Domain

Spatial Domain

Fourier Transform

Inverse Fourier Transform

Frequency Domain

Spatial Domain

Frequency Domain

y) Fourier Transform Inverse Fourier Transform u: frequency (cycles/px) in horizontal direction v: frequency (cycles/px) in vertical direction v: frequency (cycles/px) in vertical direction

F(u, v): magnitude of frequency (u, v)

x: distance (px) in horizontal direction **y**: distance (px) in vertical direction

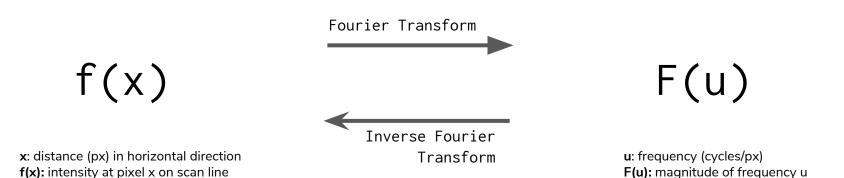
f(x, y): intensity at (x, y)

f(x, y)

1D case (scan line)

Spatial Domain

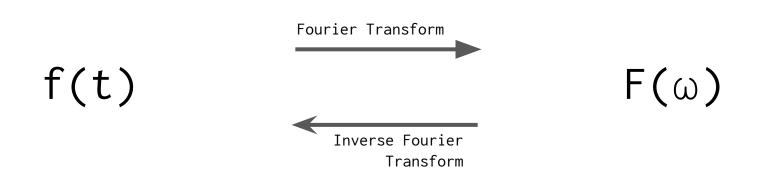
Frequency Domain



1D case (time-varying signal)

Spatial Domain

Frequency Domain



(1D Discrete) Fourier Transform

A discrete Fourier transform (DFT) turns a function into a weighted sum of sines and cosines.

FIGURE 8-5 DFT basis functions. A 32 point DFT has 17 discrete cosine waves and 17 discrete sine waves for its basis functions. Eight of these are shown in this figure. These are discrete signals; the continuous lines are shown in these graphs only to help the reader's eye follow the waveforms.

(1D Discrete) Fourier Transform

A Fourier transform is a **change of basis** into a basis of sine and cosine functions.

 $\cos(2\pi kt/N)$

If the signal contains **N** samples, the basis will contain **N** sine/cosine functions with different frequencies.

$$\sin(2\pi kt/N)$$

 $0 \le k \le N - 1$

$$F(k) = \sum_{t=0}^{N-1} f(t) e^{(-2\pi kt/N)i}$$

= $\sum_{t=0}^{N-1} f(t) \left[\cos(2\pi kt/N) - i \sin(2\pi kt/N) \right]$
= $\sum_{t=0}^{N-1} f(t) \cos(2\pi kt/N) - i \sum_{t=0}^{N-1} f(t) \sin(2\pi kt/N)$

(1D Discrete) Fourier Transform

F(k) is a complex number from which we can obtain the magnitude (amplitude) of frequencyk in the Fourier decomposition.

We can think of the output of our Fourier transform as a **magnitude** for each **frequency**.

$$F(k) = \sum_{t=0}^{N-1} f(t)e^{(-2\pi kt/N)i}$$

= $\sum_{t=0}^{N-1} f(t) \left[\cos(2\pi kt/N) - i\sin(2\pi kt/N)\right]$
= $\sum_{t=0}^{N-1} f(t)\cos(2\pi kt/N) - i\sum_{t=0}^{N-1} f(t)\sin(2\pi kt/N)$

 $\cos(2\pi kt/N)$

 $\sin(2\pi kt/N)$

$$0 \le k \le N - 1$$

Incidentally

 $A\sin(2\pi kt + \varphi)$

A: amplitude, magnitude, strength, "how much"
k, 2πk: frequency, cycles per pixel or second
φ: phase, shift, "where" the sinusoid is

Incidentally

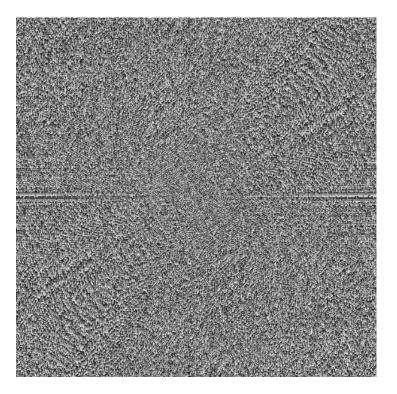
$A\sin(\omega t) + B\cos(\omega t) = C\sin(\omega t + \varphi)$

adding a sine and cosine of the same frequency gives a phase-shifted sine of that frequency

total amplitude is sqrt(A² + B²)
phase shift is arctan(A / B)

(1D Discrete) Fourier Transform

We can also get phase information out of a Fourier transform. But we won't talk about phase much because it isn't very helpful for interpretability.



In Summary: The 1D Fourier Transform

converts a signal f(t) into the frequencies that compose it.

$F(\omega)$

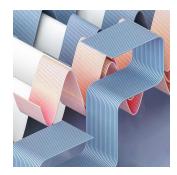
"what is the strength of the frequency- ω sinusoid in the decomposition of f(t)?"

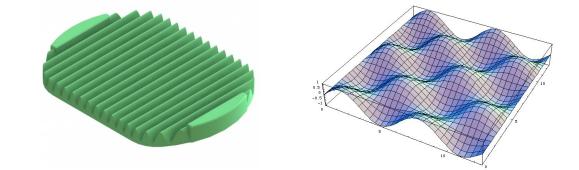
2D DFT

• The 2D DFT is analogous to the 1D DFT; just add another dimension to the input.

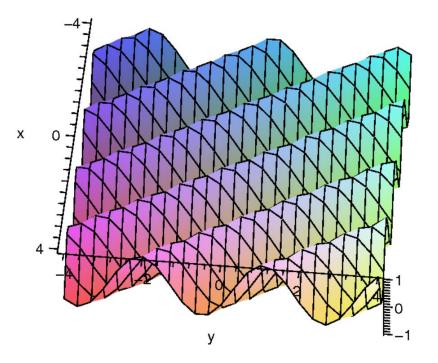
F(u, v)

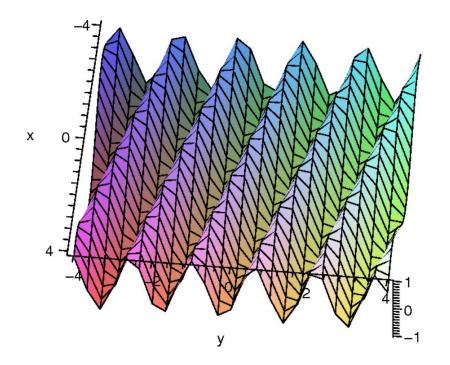
• The main difference is that the sines/cosines can now be **oriented** in 2D.





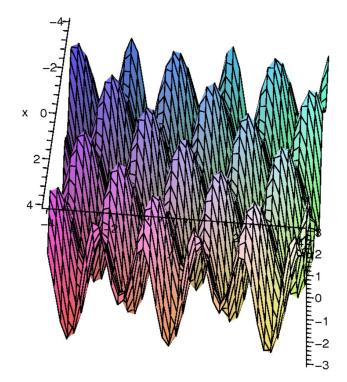
2D Basis Functions

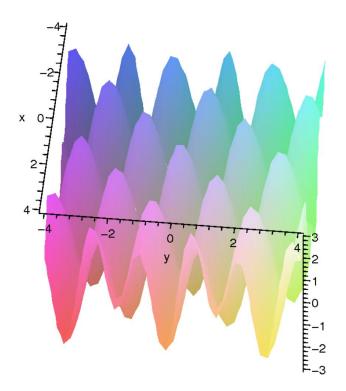




source: Václav Hlaváč

Sum of 2D Basis Functions





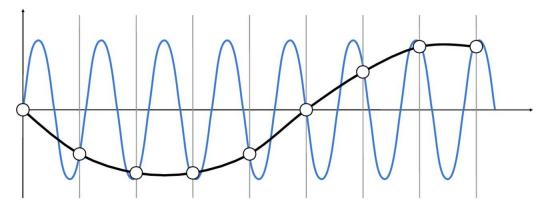
source: Václav Hlaváč

Cycles per pixel?

Cycles per pixel?

We are thinking about **spatial frequency**. The basis sinusoids appear as oriented, repeating stripes. The number of pixels it takes to move along a sinusoid from some intensity back to the same intensity is 1 / (the frequency).

To avoid aliasing, the maximum frequency we can have in a signal is $\frac{1}{2}$ of the sampling frequency.



Aliasing

To avoid aliasing, the maximum frequency we can have in a signal is $\frac{1}{2}$ of the sampling frequency.

Presumably, the sampling frequency for an image is 1 sample per pixel.

To avoid aliasing, the maximum frequency we can have in a signal is $\frac{1}{2}$ of the sampling frequency.

Presumably, the sampling frequency for an image is 1 sample per pixel.

In other words, the maximum frequency we can have in an image is 0.5 cycles per pixel. What does this mean?

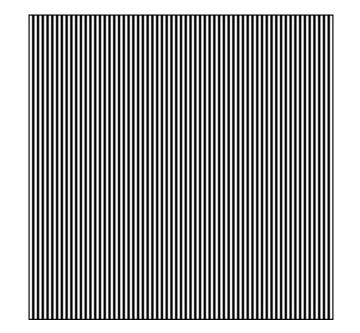
To avoid aliasing, the maximum frequency we can have in a signal is $\frac{1}{2}$ of the sampling frequency.

Presumably, the sampling frequency for an image is 1 sample per pixel.

In other words, the maximum frequency we can have in an image is 0.5 cycles per pixel. What does this mean?

at max 1 stripe per pixel extent 0.5 cycles per pixel \rightarrow intensity alternates between low and high every pixel

Half of the Nyquist frequency



- stripe width 2px
- period 4px
- frequency 0.25 cycles/px

High frequency means a signal is changing quickly over its domain.

• In the previous visualization, the pixel values were changing very quickly from left to right, and the frequency was almost at its maximum (the Nyquist frequency).

In images,

• high frequencies correspond to...

High frequency means a signal is changing quickly over its domain.

• In the previous visualization, the pixel values were changing very quickly from left to right, and the frequency was almost at its maximum (the Nyquist frequency).

In images,

• high frequencies correspond to rapid/sharp changes in intensity (edges)

High frequency means a signal is changing quickly over its domain.

• In the previous visualization, the pixel values were changing very quickly from left to right, and the frequency was almost at its maximum (the Nyquist frequency).

In images,

- high frequencies correspond to rapid/sharp changes in intensity (edges)
- low frequencies correspond to...

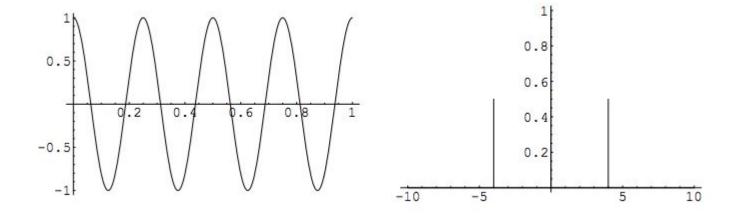
High frequency means a signal is changing quickly over its domain.

• In the previous visualization, the pixel values were changing very quickly from left to right, and the frequency was almost at its maximum (the Nyquist frequency).

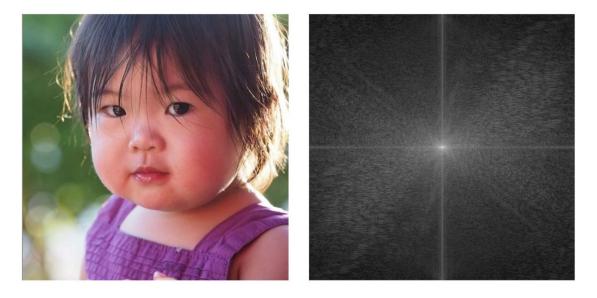
In images,

- high frequencies correspond to rapid/sharp changes in intensity (edges)
- low frequencies correspond to smooth/slow changes in intensity (blurred/smoothed regions)

For a 1D signal, we visualize the frequency domain as a 2D plot of **frequency** on the horizontal axis and **magnitude** on the vertical axis.

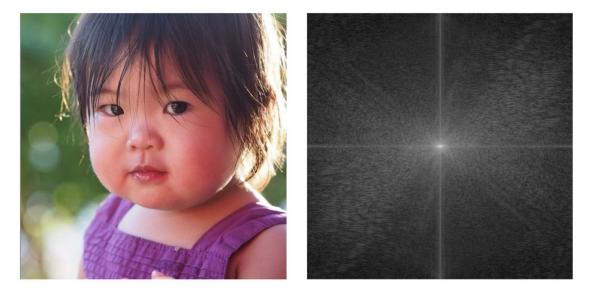


For a 2D signal, we can think of the frequency domain as a 3D plot with **oriented frequency** on the xy-plane and **magnitude** on the z-axis.



unlike a standard image, the origin of the plot is in the center

However, we pretty much always view magnitude as brightness (i.e. as part of an image), instead of plotting it on a z-axis in 3D.



higher magnitude means higher brightness means closer to white

The spatial domain and frequency domain images are the same size, i.e. the number of frequencies is equivalent to the number of pixels.



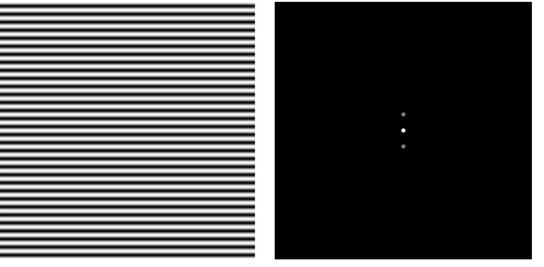
note that frequencies always range from -0.5 to 0.5, so what changes is the step between successive frequencies

zero frequency (constant; average value in image)

Spatial Domain

Frequency Domain

 $\sin(2\pi/16)y$



Spatial Domain

Frequency Domain

Interpreting Frequency Visualizations

Let's say we're interested in the point (u, v).

• Draw an arrow from the origin to **(u, v)**. This is a vector.

There are three pieces of information we can obtain.

1. The direction of vector (u, v) gives the direction of the sinusoid.

Interpreting Frequency Visualizations

Let's say we're interested in the point (u, v).

• Draw an arrow from the origin to **(u, v)**. This is a vector.

There are three pieces of information we can obtain.

- 1. The direction of vector (u, v) gives the direction of the sinusoid.
- 2. The length of vector (u, v) gives the frequency of the oriented sinusoid.

Interpreting Frequency Visualizations

Let's say we're interested in the point (u, v).

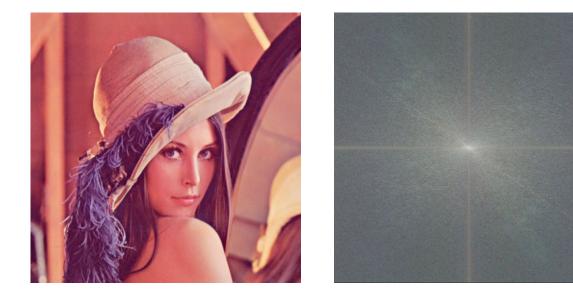
• Draw an arrow from the origin to **(u, v)**. This is a vector.

There are three pieces of information we can obtain.

- 1. The direction of vector (**u**, **v**) gives the **direction of the sinusoid**.
- 2. The length of vector (u, v) gives the **frequency of the oriented sinusoid**.
- 3. The brightness at point (u, v) gives the magnitude of the sinusoid (contrast from low to high).

The + Artifact

The DFT does its computation for an image that is tiled infinitely, meaning we (usually) end up with high-frequency edges where the top/bottom and left/right of the tiled images meet.



Convolution Theorem

Convolution in the spatial domain is equivalent to point-by-point multiplication in the frequency domain.

and what do we use convolution for?

Convolution Theorem

Convolution in the spatial domain is equivalent to point-by-point multiplication in the frequency domain.

and what do we use convolution for?

Filtering!

Convolution Theorem

Convolution in the spatial domain is equivalent to point-by-point multiplication in the frequency domain.

and what do we use convolution for?

Filtering!

So we have a choice.

• we can filter by sliding window in the spatial domain (convolve)

- or -

• we can filter by multiplication in the frequency domain (fftconvolve) (multiply frequency version of the image by the frequency version of the convolution filter)

Efficiency.

Note: we don't get the element-wise multiplication completely for free. We also have to perform Fourier transforms **to** and **from** the frequency domain.

For large arrays, it's faster to go to the frequency domain and filter there. For smaller arrays, it's faster to stay in the spatial domain and do a gridded convolution.

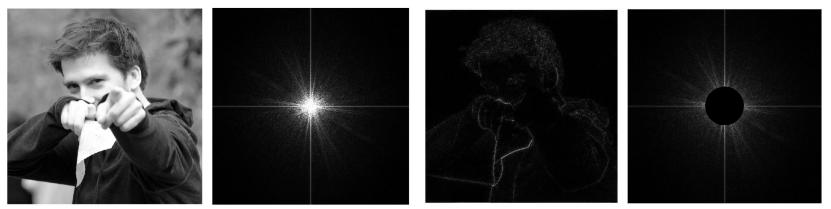
Interpretability.

Interpretability.

We can look at convolution as an operation over a grid of numbers, or as modifying the frequencies of an image. It is often intuitive to think in terms of frequencies.

source: Ren Ng

Interpretability.

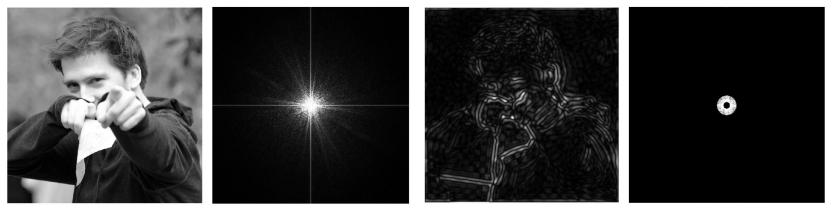


high-pass filtering: pass only the high frequencies

Interpretability.

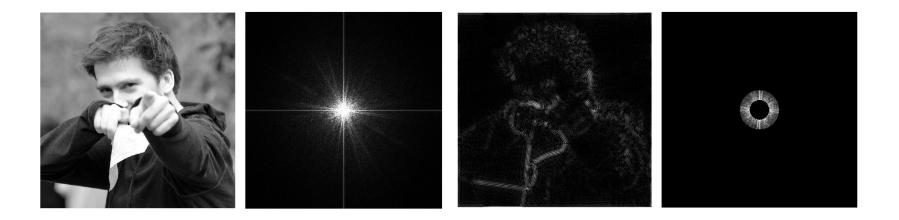
easy to see smoothness in frequency domain!

Interpretability.



band-pass filter: filters out both high and low frequencies, looks like a band

Interpretability.



Convolve the signal [1, 2, 3, 4, 5] with the filter [1, 2, 3].

(No need to pad.)

Convolve the signal [1, 2, 3, 4, 5] with the filter [1, 2, 3].

(No need to pad.)

[10

1x3 + 2x2 + 3x1

Convolve the signal [1, 2, 3, 4, 5] with the filter [1, 2, 3].

(No need to pad.)

[10, 16

2x3 + 3x2 + 4x1

Convolve the signal [1, 2, 3, 4, 5] with the filter [1, 2, 3].

(No need to pad.)

[10, 16, 22]

3x3 + 4x2 + 5x1

The Edge Case

 		_	_	_	_	_		
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

cv2.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])

How to extrapolate pixels over the border?

/*

*/

Various border types, image boundaries are denoted with '|'

- BORDER REPLICATE:
- BORDER REFLECT:
- BORDER REFLECT 101: *
- BORDER WRAP: *
- BORDER CONSTANT:

aaaaaa abcdefgh hhhhhhh fedcba | abcdefgh | hgfedcb gfedcb | abcdefgh | gfedcba cdefgh | abcdefgh | abcdefg iiiiii/abcdefgh/iiiiiii with some specified 'i'

scipy.signal.fftconvolve(in1, in2, mode='full')

Do we even want to extrapolate?

mode : *str {'full', 'valid', 'same'*}, *optional* A string indicating the size of the output:

full

The output is the full discrete linear convolution of the inputs. (Default)

valid

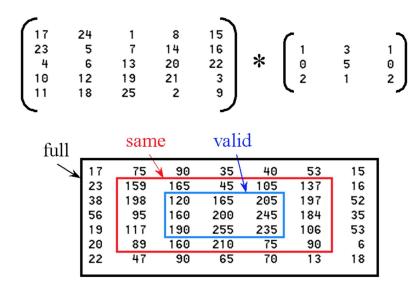
The output consists only of those elements that do not rely on the zero-padding.

same

The output is the same size as *in1*, centered with respect to the 'full' output.

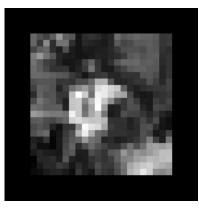
(Aside: Full vs Same vs Valid)

Note that only "full" convolution is commutative and associative. "Same" and "valid" convolutions are not.



• Constant

Pretend that everything outside the image is some specified constant (commonly zero).

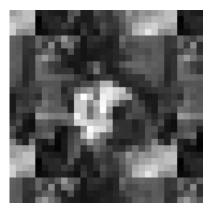


- Constant
- Replicate

Pretend that everything outside the image is whatever's already on the edge.

- Constant
- Replicate
- Wrap

Pretend that the image is tiled indefinitely, i.e. "loop over the image."



- Constant
- Replicate
- Wrap
- Mirror

Reflect the image across its edges.

- Constant
- Replicate
- Wrap
- Mirror
- ...

Additional Readings

Sobel filter

https://stackoverflow.com/questions/17078131/why-sobel-operator-looks-that-way

Fourier domain images

- <u>http://cns-alumni.bu.edu/~slehar/fourier/fourier.html</u>
- https://www.cs.toronto.edu/~guerzhoy/320/lec/FreqDomain.pdf

Circular paths

• <u>https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/</u>