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What is a filter?
What comes to mind?



A device that lets only some of its inputs through



A process that lets only some of its inputs through



A process that lets some scalings of its inputs through

source: Steven Seitz



and so transforms content

source: TapSmart



What does a linear filter do to an image?
Hint: why is it called a linear filter?



Linear Filter (An Image Processing View)

Replace each pixel with a linear combination of values in its neighborhood.
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Linear Filter (An Image Processing View)

Replace each pixel with a linear combination of values in its neighborhood.

Correlation

Convolution

● not commutative or associative
● (preferably) use for measuring similarity

● commutative and associative
● (preferably) use for filtering
● “flip filter horizontally and vertically”
● denoted h = f * I
● btw, k, l defined w.r.t. center of kernel



Why do we care about associativity?



Why do we care about associativity?
Associativity means that f * (g * I) = (f * g) * I.
If we want to apply multiple filters, we can pre-convolve them and 
use (then reuse) them as a single filter!



Properties of Linear Filters

● They obey the superposition principle.
f * (αI + J) = α(f * I) + f * J
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● They are shift-invariant.
f * shifted(I) = shifted(f * I)
 

“we can shift the image to the left by one pixel, then filter –
or we can filter, then shift the result to the left by one pixel”



Properties of Linear Filters

● They obey the superposition principle.
f * (αI + J) = α(f * I) + f * J

● They are shift-invariant.
f * shifted(I) = shifted(f * I)
 

“we perform the same operation no matter where we are”



Filtering Results

sharpening via
unsharp filtering



Filtering Results

denoising via
median filtering

(nonlinear)



An image is a function f(x, y)

It is a mapping from pixel locations           to intensities         .  

source: Seitz, Szeliski



An image is a function f(x, y)

A color image is a mapping from pixel locations           to RGB intensities          .  

source: Seitz, Szeliski



An image is a signal f(x, y)

In the case of digital images, we discretely sample an underlying continuous function.

source: Seitz, Szeliski



...is signal processing
image source: Daniel Sierra

So what we’re really doing...

http://optical-rhythm.com/#/oscillate-1/


A digital image is a discrete 2D signal (function) (vector).

Traditionally, we think of them as 
they exist in the spatial domain.



A digital image is a discrete 2D signal (function) (vector).

Traditionally, we think of them as 
they exist in the spatial domain.

But signal processing gives us a 
new way to think about things…
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A digital image is a discrete 2D signal (function) (vector).

              Spatial Domain            Frequency Domain

Fourier Transform

Inverse Fourier 
Transform

f(x, y) F(u, v)
x: distance (px) in horizontal direction
y: distance (px) in vertical direction

f(x, y): intensity at (x, y)

u: frequency (cycles/px) in horizontal direction
v: frequency (cycles/px) in vertical direction

F(u, v): magnitude of frequency (u, v)



1D case (scan line)

              Spatial Domain            Frequency Domain

Fourier Transform

Inverse Fourier 
Transform

f(x) F(u)
x: distance (px) in horizontal direction
f(x): intensity at pixel x on scan line

u: frequency (cycles/px)
F(u): magnitude of frequency u



1D case (time-varying signal)

              Spatial Domain            Frequency Domain

Fourier Transform

Inverse Fourier 
Transform

f(t) F(ω)



(1D Discrete) Fourier Transform

A discrete Fourier transform (DFT) turns a function into a weighted sum of sines and cosines.



(1D Discrete) Fourier Transform

A Fourier transform is a change of basis into a basis of 
sine and cosine functions.

If the signal contains N samples, the basis will contain 
N sine/cosine functions with different frequencies.



(1D Discrete) Fourier Transform

F(k) is a complex number from which we can 
obtain the magnitude (amplitude) of frequency 
k in the Fourier decomposition.

We can think of the output of our Fourier 
transform as a magnitude for each frequency.



Incidentally

A: amplitude, magnitude, strength, “how much”
k, 2πk: frequency, cycles per pixel or second

φ: phase, shift, “where” the sinusoid is



Incidentally

adding a sine and cosine of the same frequency
gives a phase-shifted sine of that frequency

total amplitude is sqrt(A2 + B2)
phase shift is arctan(A / B)



(1D Discrete) Fourier Transform

We can also get phase information out of a 
Fourier transform. But we won’t talk about 
phase much because it isn’t very helpful for 
interpretability.



In Summary: The 1D Fourier Transform

converts a signal f(t) into the frequencies that compose it.

F(ω)
“what is the strength of the frequency-ω
sinusoid in the decomposition of f(t)?”



2D DFT

● The 2D DFT is analogous to the 1D DFT; just add another dimension to the input.

F(u, v)

● The main difference is that the sines/cosines can now be oriented in 2D.



source: Václav Hlaváč

2D Basis Functions



source: Václav Hlaváč

Sum of 2D Basis Functions



Cycles per pixel?



Cycles per pixel?
We are thinking about spatial frequency. The basis sinusoids appear as 
oriented, repeating stripes. The number of pixels it takes to move along a 

sinusoid from some intensity back to the same intensity is 1 / (the frequency).



Nyquist frequency

To avoid aliasing, the maximum frequency we
can have in a signal is ½ of the sampling frequency.

Aliasing

source: Ren Ng
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Nyquist frequency

To avoid aliasing, the maximum frequency we
can have in a signal is ½ of the sampling frequency.

Presumably, the sampling frequency for an image is 1 sample per pixel.

In other words, the maximum frequency we can have
in an image is 0.5 cycles per pixel. What does this mean?

at max 1 stripe per pixel extent
0.5 cycles per pixel → intensity alternates between low and high every pixel



Half of the Nyquist frequency

● stripe width 2px
● period 4px
● frequency 0.25 cycles/px



High vs. low frequencies

High frequency means a signal is changing quickly over its domain.

● In the previous visualization, the pixel values were changing very quickly from left to right, and the 
frequency was almost at its maximum (the Nyquist frequency).

In images,

● high frequencies correspond to...

?
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High vs. low frequencies

High frequency means a signal is changing quickly over its domain.

● In the previous visualization, the pixel values were changing very quickly from left to right, and the 
frequency was almost at its maximum (the Nyquist frequency).

In images,

● high frequencies correspond to rapid/sharp changes in intensity (edges)
● low frequencies correspond to smooth/slow changes in intensity (blurred/smoothed regions)



Frequency Domain Images (1D)   understanding the frequency domain

For a 1D signal, we visualize the frequency domain as a 2D plot
of frequency on the horizontal axis and magnitude on the vertical axis.

source: Bryan Morse



Frequency Domain Images (2D)   understanding the frequency domain

For a 2D signal, we can think of the frequency domain as a 3D plot
with oriented frequency on the xy-plane and magnitude on the z-axis.

source: Ren Ng

unlike a standard image,
the origin of the plot is in the center



Frequency Domain Images (2D)   understanding the frequency domain

However, we pretty much always view magnitude as brightness
(i.e. as part of an image), instead of plotting it on a z-axis in 3D.

source: Ren Ng

higher magnitude
means higher brightness
means closer to white



Frequency Domain Images (2D)   understanding the frequency domain

The spatial domain and frequency domain images are the same size,
i.e. the number of frequencies is equivalent to the number of pixels.

source: Ren Ng

note that frequencies always range from 
-0.5 to 0.5, so what changes is the step 
between successive frequencies



Frequency Domain Images (2D)   understanding the frequency domain

zero frequency (constant; average value in image)

source: Ren Ng



Frequency Domain Images (2D)   understanding the frequency domain

source: Ren Ng



Interpreting Frequency Visualizations

Let’s say we’re interested in the point (u, v).

● Draw an arrow from the origin to (u, v). This is a vector.

There are three pieces of information we can obtain.

1. The direction of vector (u, v) gives the direction of the sinusoid.
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Interpreting Frequency Visualizations

Let’s say we’re interested in the point (u, v).

● Draw an arrow from the origin to (u, v). This is a vector.

There are three pieces of information we can obtain.

1. The direction of vector (u, v) gives the direction of the sinusoid.
2. The length of vector (u, v) gives the frequency of the oriented sinusoid.
3. The brightness at point (u, v) gives the magnitude of the sinusoid (contrast from low to high).



The + Artifact

The DFT does its computation for an image that is tiled infinitely, meaning we (usually) end up with 
high-frequency edges where the top/bottom and left/right of the tiled images meet.



Convolution Theorem

Convolution in the spatial domain is equivalent to
point-by-point multiplication in the frequency domain.

and what do we use convolution for?
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Convolution Theorem

Convolution in the spatial domain is equivalent to
point-by-point multiplication in the frequency domain.

and what do we use convolution for?

Filtering!

So we have a choice.

● we can filter by sliding window in the spatial domain (convolve)

- or -

● we can filter by multiplication in the frequency domain (fftconvolve)
(multiply frequency version of the image by the frequency version of the convolution filter)



Why would we want to filter in the frequency domain?

Efficiency.

Note: we don’t get the element-wise multiplication completely for free.
We also have to perform Fourier transforms to and from the frequency domain.

For large arrays, it’s faster to go to the frequency domain and filter there.
For smaller arrays, it’s faster to stay in the spatial domain and do a gridded convolution.



Why would we want to filter in the frequency domain?

Interpretability.

We can look at convolution as an operation over a grid of numbers,
or as modifying the frequencies of an image. It is often intuitive to think in terms of frequencies.
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Why would we want to filter in the frequency domain?

Interpretability.

We can look at convolution as an operation over a grid of numbers,
or as modifying the frequencies of an image. It is often intuitive to think in terms of frequencies.

source: Ren Ng

high-pass filtering:
pass only the high frequencies



Why would we want to filter in the frequency domain?

Interpretability.

We can look at convolution as an operation over a grid of numbers,
or as modifying the frequencies of an image. It is often intuitive to think in terms of frequencies.

easy to see smoothness in frequency domain!

source: Ren Ng



Why would we want to filter in the frequency domain?

Interpretability.

We can look at convolution as an operation over a grid of numbers,
or as modifying the frequencies of an image. It is often intuitive to think in terms of frequencies.

source: Ren Ng

band-pass filter: filters out both high and low 
frequencies, looks like a band



Why would we want to filter in the frequency domain?

Interpretability.

We can look at convolution as an operation over a grid of numbers,
or as modifying the frequencies of an image. It is often intuitive to think in terms of frequencies.

source: Ren Ng



Convolve the signal [1, 2, 3, 4, 5] with the filter [1, 2, 3].

(Extra) Basic Convolution Practice

(No need to pad.)
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Convolve the signal [1, 2, 3, 4, 5] with the filter [1, 2, 3].
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(No need to pad.)
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2x3 + 3x2 + 4x1



Convolve the signal [1, 2, 3, 4, 5] with the filter [1, 2, 3].

(Extra) Basic Convolution Practice

(No need to pad.)

[10, 16, 22]
3x3 + 4x2 + 5x1



The Edge Case

source: Steven Seitz



Padding Options

cv2.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])

How to extrapolate pixels over the border?



Padding Options

scipy.signal.fftconvolve(in1, in2, mode='full')

Do we even want to extrapolate?



(Aside: Full vs Same vs Valid)

Note that only “full” convolution is commutative and associative.
“Same” and “valid” convolutions are not.

source: John Loomis



Padding Options

● Constant
Pretend that everything outside the image is some specified constant (commonly zero).

source: Richard Szeliski



Padding Options

● Constant
● Replicate

Pretend that everything outside the image is whatever’s already on the edge.

source: Richard Szeliski



Padding Options

● Constant
● Replicate
● Wrap

Pretend that the image is tiled indefinitely, i.e. “loop over the image.”

source: Richard Szeliski



Padding Options

● Constant
● Replicate
● Wrap
● Mirror

Reflect the image across its edges.

source: Richard Szeliski



Padding Options

● Constant
● Replicate
● Wrap
● Mirror
● ...



Additional Readings

Sobel filter
● https://stackoverflow.com/questions/17078131/why-sobel-operator-looks-that-way 

Fourier domain images
● http://cns-alumni.bu.edu/~slehar/fourier/fourier.html 
● https://www.cs.toronto.edu/~guerzhoy/320/lec/FreqDomain.pdf 

Circular paths
● https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/ 

https://stackoverflow.com/questions/17078131/why-sobel-operator-looks-that-way
http://cns-alumni.bu.edu/~slehar/fourier/fourier.html
https://www.cs.toronto.edu/~guerzhoy/320/lec/FreqDomain.pdf
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

