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1 Motivation

A system of m linear equations in n variables can be written in the form Ax = b, where A is an m×n
matrix of coefficients, x is an n× 1 vector of variables, and b is an m× 1 vector of constant terms.
If b = 0, i.e. all the constant terms are zero, we call the system of equations homogeneous.

In HW2, homogeneous systems of equations arise when computing the fundamental matrix via the
eight-point algorithm (Af = 0) and when computing epipoles (FTe = 0, Fe′ = 0). Of course,
a homogeneous system always admits a trivial solution of 0, but this solution is typically useless.
Obviously 0 is not a valid fundamental matrix!

In short, we would like to find the best solution for Ax = 0 that isn’t x = 0. We will assume that
A is rank-deficient, meaning a nontrivial solution does exist. Depending on the shape of A, there
are two main ways we can go about this...

2 Case #1: A is square

A square matrix A ∈ Rd×d maps d-dimensional vectors to d-dimensional vectors. Accordingly, it has
eigenvectors – vectors which are scaled under A. Again, we’re assuming that A has a nontrivial null
space and hence has at least one zero eigenvalue. Thus, as a solution x to Ax = 0, we can simply
use an eigenvector of A with a zero eigenvalue. Eigenvectors cannot be zero vectors, so the triviality
issue is resolved.

Since the fundamental matrix F ∈ R3×3 is square, we can follow this approach to find the epipoles.
Namely, to find e we can take the eigenvector of FT with the minimal eigenvalue, and to find e′ we
can take the eigenvector of F with the minimal eigenvalue. The reason I say “minimal eigenvalue”
instead of “zero eigenvalue” is that our estimate of F is probably only an approximation.1 Therefore,
it might not have a zero eigenvalue exactly, and the best thing we can do is adopt the eigenvector
with the smallest eigenvalue (since it will make FTe or Fe′ as close as possible to 0).

3 Case #2: A is of arbitrary shape

In general, a matrix A might be non-square and thus lack eigenvectors. But it will have an SVD:

A = USVT

1There are multiple potential reasons for this, e.g. the rank-2 approximation step in the eight-point algorithm.
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The SVD has many applications, e.g. low-rank matrix approximation. As we will see, it can also be
used to find nontrivial least-squares solutions to homogeneous systems of equations Ax = 0.

The least-squares objective to minimize is ‖Ax− b‖2 = ‖Ax‖2 = xTATAx, and in order to avoid
trivial solutions we will also impose the constraint that ‖x‖ = 1 (the scale of x doesn’t matter; any
scaling of a solution to Ax = 0 will also be a solution. We just don’t want the norm to be 0).

Note that xTATAx is a multivariate function (one variable for every component of x). To minimize
it subject to ‖x‖ = 1 =⇒ xTx = 1, we can introduce a Lagrange multiplier λ and set up the
Lagrangian

L(x, λ) = xTATAx− λ(xTx− 1)

Then, to find the minimum of L, we take the gradient2 and set it equal to 0:

ATAx− λx = 0

ATAx = λx

It follows that x should be an eigenvector of ATA with corresponding eigenvalue λ. Since ATA is
positive semidefinite, its eigenvalues are nonnegative. Thus xTATAx = λxTx is minimized for x the
eigenvector corresponding to the eigenvalue closest to zero (which is just the smallest eigenvalue).

As it happens, the minimizing solution x ends up being the right singular vector of A corresponding
to the smallest singular value. Why? Because in the SVD A = USVT , the right singular vectors
(columns of V) are the same as the eigenvectors of ATA, and the squared singular values are the
same as the eigenvalues of ATA.

Proof. If A = USVT , then

ATA = (USVT )T (USVT )

= VSUTUSVT (S is a diagonal matrix)

= VS2VT (U is a unitary/orthogonal matrix)

V is also a unitary/orthogonal matrix. So if we right-multiply both sides by V, we have

ATAV = VS2 | . . . |
ATAv1 . . . ATAvn

| . . . |

 =

 | . . . |
v1 . . . vn

| . . . |


σ

2
1 . . . 0
...

. . .
...

0 . . . σ2
n


 | . . . |
ATAv1 . . . ATAvn

| . . . |

 =

 | . . . |
σ2
1v1 . . . σ2

nvn

| . . . |


Clearly, the columns of V (v1, ...,vn) are eigenvectors of ATA with eigenvalues σ2

1 , ..., σ
2
n. Therefore,

in order to obtain the eigenvector of ATA with the smallest eigenvalue, we can take the right singular
vector vi of A = USVT with the smallest singular value σi.

This is what we will do in the context of the eight-point algorithm, in which we have a potentially
overdetermined system Af = 0 and want to solve for f , the components of the fundamental matrix.

2 https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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