HW2: Solving Homogeneous Systems

OWEN JOW

May 5, 2019

1 Motivation

A system of *m* linear equations in *n* variables can be written in the form $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix of coefficients, \mathbf{x} is an $n \times 1$ vector of variables, and \mathbf{b} is an $m \times 1$ vector of constant terms. If $\mathbf{b} = \mathbf{0}$, i.e. all the constant terms are zero, we call the system of equations homogeneous.

In HW2, homogeneous systems of equations arise when computing the fundamental matrix via the eight-point algorithm $(\mathbf{Af} = \mathbf{0})$ and when computing epipoles $(\mathbf{F}^T \mathbf{e} = \mathbf{0}, \mathbf{Fe}' = \mathbf{0})$. Of course, a homogeneous system always admits a trivial solution of $\mathbf{0}$, but this solution is typically useless. Obviously $\mathbf{0}$ is not a valid fundamental matrix!

In short, we would like to find the best solution for Ax = 0 that isn't x = 0. We will assume that A is rank-deficient, meaning a nontrivial solution does exist. Depending on the shape of A, there are two main ways we can go about this...

2 Case #1: A is square

A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ maps *d*-dimensional vectors to *d*-dimensional vectors. Accordingly, it has *eigenvectors* – vectors which are scaled under \mathbf{A} . Again, we're assuming that \mathbf{A} has a nontrivial null space and hence has at least one zero eigenvalue. Thus, as a solution \mathbf{x} to $\mathbf{A}\mathbf{x} = \mathbf{0}$, we can simply use an eigenvector of \mathbf{A} with a zero eigenvalue. Eigenvectors cannot be zero vectors, so the triviality issue is resolved.

Since the fundamental matrix $\mathbf{F} \in \mathbb{R}^{3\times 3}$ is square, we can follow this approach to find the epipoles. Namely, to find \mathbf{e} we can take the eigenvector of \mathbf{F}^T with the minimal eigenvalue, and to find \mathbf{e}' we can take the eigenvector of \mathbf{F} with the minimal eigenvalue. The reason I say "minimal eigenvalue" instead of "zero eigenvalue" is that our estimate of \mathbf{F} is probably only an approximation.¹ Therefore, it might not have a zero eigenvalue exactly, and the best thing we can do is adopt the eigenvector with the *smallest* eigenvalue (since it will make $\mathbf{F}^T \mathbf{e}$ or $\mathbf{F}\mathbf{e}'$ as close as possible to $\mathbf{0}$).

3 Case #2: A is of arbitrary shape

In general, a matrix A might be non-square and thus lack eigenvectors. But it will have an SVD:

 $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$

¹There are multiple potential reasons for this, e.g. the rank-2 approximation step in the eight-point algorithm.

The SVD has many applications, e.g. low-rank matrix approximation. As we will see, it can also be used to find nontrivial least-squares solutions to homogeneous systems of equations $\mathbf{A}\mathbf{x} = \mathbf{0}$.

The least-squares objective to minimize is $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 = \|\mathbf{A}\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}$, and in order to avoid trivial solutions we will also impose the constraint that $\|\mathbf{x}\| = 1$ (the scale of \mathbf{x} doesn't matter; any scaling of a solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$ will also be a solution. We just don't want the norm to be 0).

Note that $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$ is a multivariate function (one variable for every component of \mathbf{x}). To minimize it subject to $\|\mathbf{x}\| = 1 \implies \mathbf{x}^T \mathbf{x} = 1$, we can introduce a Lagrange multiplier λ and set up the Lagrangian

$$\mathcal{L}(\mathbf{x},\lambda) = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - \lambda (\mathbf{x}^T \mathbf{x} - 1)$$

Then, to find the minimum of \mathcal{L} , we take the gradient² and set it equal to **0**:

$$\mathbf{A}^T \mathbf{A} \mathbf{x} - \lambda \mathbf{x} = \mathbf{0}$$
$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \lambda \mathbf{x}$$

It follows that \mathbf{x} should be an eigenvector of $\mathbf{A}^T \mathbf{A}$ with corresponding eigenvalue λ . Since $\mathbf{A}^T \mathbf{A}$ is positive semidefinite, its eigenvalues are nonnegative. Thus $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = \lambda \mathbf{x}^T \mathbf{x}$ is minimized for \mathbf{x} the eigenvector corresponding to the eigenvalue closest to zero (which is just the smallest eigenvalue).

As it happens, the minimizing solution \mathbf{x} ends up being the right singular vector of \mathbf{A} corresponding to the smallest singular value. Why? Because in the SVD $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$, the right singular vectors (columns of \mathbf{V}) are the same as the eigenvectors of $\mathbf{A}^T\mathbf{A}$, and the squared singular values are the same as the eigenvalues of $\mathbf{A}^T\mathbf{A}$.

Proof. If $\mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T$, then

$$\mathbf{A}^{T}\mathbf{A} = (\mathbf{U}\mathbf{S}\mathbf{V}^{T})^{T}(\mathbf{U}\mathbf{S}\mathbf{V}^{T})$$
$$= \mathbf{V}\mathbf{S}\mathbf{U}^{T}\mathbf{U}\mathbf{S}\mathbf{V}^{T} \quad (\mathbf{S} \text{ is a diagonal matrix})$$
$$= \mathbf{V}\mathbf{S}^{2}\mathbf{V}^{T} \quad (\mathbf{U} \text{ is a unitary/orthogonal matrix})$$

 \mathbf{V} is also a unitary/orthogonal matrix. So if we right-multiply both sides by \mathbf{V} , we have

$$\mathbf{A}^{T}\mathbf{A}\mathbf{V} = \mathbf{V}\mathbf{S}^{2}$$

$$\begin{bmatrix} \mathbf{A}^{T}\mathbf{A}\mathbf{v}_{1} & \dots & \mathbf{A}^{T}\mathbf{A}\mathbf{v}_{n} \\ | & \dots & | \end{bmatrix} = \begin{bmatrix} | & \dots & | \\ \mathbf{v}_{1} & \dots & \mathbf{v}_{n} \\ | & \dots & | \end{bmatrix} \begin{bmatrix} \sigma_{1}^{2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{n}^{2} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A}^{T}\mathbf{A}\mathbf{v}_{1} & \dots & \mathbf{A}^{T}\mathbf{A}\mathbf{v}_{n} \\ | & \dots & | \end{bmatrix} = \begin{bmatrix} | & \dots & | \\ \sigma_{1}^{2}\mathbf{v}_{1} & \dots & \sigma_{n}^{2}\mathbf{v}_{n} \\ | & \dots & | \end{bmatrix}$$

Clearly, the columns of \mathbf{V} ($\mathbf{v}_1, ..., \mathbf{v}_n$) are eigenvectors of $\mathbf{A}^T \mathbf{A}$ with eigenvalues $\sigma_1^2, ..., \sigma_n^2$. Therefore, in order to obtain the eigenvector of $\mathbf{A}^T \mathbf{A}$ with the smallest eigenvalue, we can take the right singular vector \mathbf{v}_i of $\mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T$ with the smallest singular value σ_i .

This is what we will do in the context of the eight-point algorithm, in which we have a potentially overdetermined system $\mathbf{Af} = \mathbf{0}$ and want to solve for \mathbf{f} , the components of the fundamental matrix.

² https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf