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1 Low-Level Vision

After a multi-week review of linear algebra, you were given an introduction to filtering, one of the
most basic computer vision operations. Filtering refers to a transformation on each pixel intensity
as a function of neighboring pixel intensities. In the linear case, it can be seen as sliding a kernel of
weights over the image and taking dot products to determine each pixel’s new value. This is known
as a correlation or convolution operation, the latter being when the kernel is flipped.

Note that I have been speaking in regard to the spatial domain so far. We can also view images as
denizens of the frequency domain, which arises from the Fourier notion that we can represent any
function in terms of sines and cosines. It turns out that an image is just a function (from x, y to
intensity), so it can be represented in terms of sines and cosines too. Specifically, a 2D image can
be represented through a Fourier transform as a weighted sum of 2D sines and cosines of different
frequencies.1 Those weights and frequencies we can plot in a frequency domain image, which is a
function from x-frequency, y-frequency to the weight of the corresponding sinusoid.

We can directly tie frequency manipulation back to linear filtering using the convolution theorem,
which tells us that convolution in the spatial domain is equivalent to point-wise multiplication in
the frequency domain. Hence we can filter by converting everything into the frequency domain via
FFT,2 multiplying, and then converting back via inverse FFT.

Next, you learned about feature matching, which here means “finding points in 2+ images which
represent the same point in 3D.” This is a very important topic in computer vision because the
ability to robustly determine correspondences in different views allows you to solve a large number
of problems, including but not at all limited to optical flow and SfM.3 Commonly, feature matching is
broken into three steps: keypoint localization, local descriptor extraction, and descriptor matching.

There are many types of interest points; in this class, we covered Harris corners. A corner in an
image is a point around which there are strong derivatives in two directions. Accordingly, it is
distinctive and hopefully localizable in different views of a scene (because it’s not going to look the
same as, e.g., all other points on an edge, or all other points in a flat region).

To find corners, threshold based on corner response at each location. A Harris corner is one detected
according to the Harris corner response function λ1λ2 − α(λ1 + λ2)2, where λ1 and λ2 are the
eigenvalues of the second moment matrix[ ∑
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1For an image, frequency is cycles in intensity per pixel – as opposed to per second. Look up “spatial frequency!”
2Fast Fourier transform: an n logn algorithm to compute the discrete Fourier transform.
3Structure from motion: 3D structure and camera pose estimation from multiple views of a scene.
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The idea is that we want the eigenvalues of that matrix to be similar and large, which signifies that
the gradients in the window around the point are strong in two different directions.

Once we have keypoints, we ought to extract descriptors based on their surrounding windows, since
matching just by comparing single pixel intensities is prone to failure. A popular choice of descriptor
is SIFT, which in a simplified sense is a normalized histogram of oriented gradients. It is invariant
to a lot of window transformations, including orientation and brightness changes.

Finally, we can match the descriptors based on some metric, e.g. L2 distance. When identifying
matches, it helps to make sure the best match is much better than the second-best match – so we’ll
accept matches based on the ratio of best match distance to second-best match distance.

2 Motion

The Lucas-Kanade optical flow method solves for the (u, v) motion of a window which best adheres
to brightness constancy across two frames. Note that our standard brightness constancy equation
I(x, y, t− 1) = I(x+ u, y + v, t) assumes pure translation within a neighborhood; we can use other
motion models if we so desire.

Based on three assumptions (brightness constancy, small motion, and spatial coherence), the system
of equations we end up having to solve for u and v isIx(p1) Iy(p1)

...
...
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[uv
]

= −

It(p1)
...

It(pn)


(The linearized brightness constancy equation for a single pixel is Ixu+ Iyv = −It.)

Acknowledgments

This document was directly inspired by Yining Liu’s “what have you learned so far?” writeups.

2


	Low-Level Vision
	Motion

