
CS 61A Discussion 11
Structured Query Language

April 20, 2017
^lol

select a* from content;

ANNOUNCEMENTS

● Scheme project is due today
○ Do read your autograder emails!
○ No composition revisions! :(

● Ants composition revisions are due on 4/30

● Scheme recursive art!!! (due 5/1)

● Databricks lab next Tuesday

ATTENDANCE

What shall the Christians do today?

● tiny.cc/420praiseit

AGENDA

● S

● Q

● L

ADVICE

To quit the sqlite3 interpreter, run .quit

(mostly a note from last semester for when

I forgot it again this semester)

select sql_intro from content;

SQL is a declarative language for managing database systems.
● This mostly revolves around creating tables and making queries into them.
● “Declarative” - I tell you what I want. You do it for me. I don’t care how.

Here’s what some previous 61A students satisfied customers have to say about it:

+ “My mom uses SQL” - anonymous Fall 2016 student
+ “I don’t remember SQL at all” - anonymous Spring 2016 student
+ “I love SQL! I SQL all day every day and I’m glad I studied it in 61A. Also Owen is the

best” - anonymous and not at all fake person
+ “The sequel to what?” - anonymous Fall 2014 student

select xkcd:) from content;

select frequently_asked from content;

● Why the obscenity do we need SQL when we can just write for-loops and
achieve the same result?

○ SQL is uniquely and especially optimized for information storage and retrieval. To learn more

about this, take CS 186.

■ Would you rather eat a meal prepared by a professional chef (SQL) or by your lazy friend

(whose instrument of choice is a microwave – for-loops)?

■ ...would you rather eat a bagel from a specialty bagel shop (SQL) or from Target (for-loops)?

● Does anyone actually use SQL?
○ Yes

■ Fall 2016 student’s mom

■ Facebook for its user data (I have not fact-checked this)

■ OK for all of its data

select the_basics from content;

In SQL, data is organized into tables.

● table: a bunch of data in a single
structure

● column: all of the values for a
specific data attribute

● row: a “table entry” (with a value for
every column)

select select from content;

Want to make a query? Your buddy select can help you out.

SELECT <column expression(s)>

 FROM <table(s)>

[WHERE <predicate(s)>]

[GROUP BY <column expression(s)>

 [HAVING <predicate(s)>]]

[ORDER BY <column expression(s)>]

[LIMIT <limit>];

[] means “optional”, <> means “insert actual content”

select an_explanation from content;

Evaluation (mostly) happens in the order in which it is written.

SELECT <column expression(s)> “we’ll want these columns as output”
 FROM <table(s)> “from these tables”
[WHERE <predicate(s)>] “but only values that satisfy these conditions”
[GROUP BY <column expression(s)> “and also only one value per group”
 [HAVING <predicate(s)>]] “or actually per group that satisfies these conditions”
[ORDER BY <column expression(s)>] “...hmm. order the output like so”
[LIMIT <limit>]; “and finally limit our output to some number of entries”

select assorted_notes from content;

● Using the asterisk (*) as the columns will select ALL of them
● Whitespace and capitalization of keywords is unimportant
● where filters rows. having filters groups. More on this in a sec…

heheheh

select sql_groups0 from content;

[GROUP BY <column expression(s)>

 [HAVING <predicate(s)>]]

Grouping: used for aggregation. When we say GROUP BY X, every row with the same value of
X will be put into one group. Accordingly, there will be a group for every distinct value of X.
Note that only one value per group can contribute to the output.

Default group: everything

Aggregate functions will be applied within individual groups:

count, max, min, sum, avg, first, last ← vaguely ordered in terms of 61A importance

select sql_groups1 from content;

HAVING filters out groups (by contrast, WHERE
filters out individual rows)

tl;dr Grouping is like dividing your data into
buckets and then only using one aggregated
row per bucket

select sql_ordering from content;

...ORDER BY <column expression(s)>...

To output in descending order, you can use
ORDER BY <column expression(s)> DESC

or
ORDER BY -<column expression(s)>

if the column expression is numerical

select sql_joins from content;

● You can think of a join as being the Cartesian
product of the table rows (each row from each table
combined with each row from every other table).

● i.e. the result of a join is a “super”-table, where every
row from the first table is paired with every row from
the second table!

● Aliasing (<table> as <name>) never really hurts.
Unless you have arthritic fingers and typing extra
characters hurts. :(If there are any similarly-named
columns across your tables, you can just do it.

select recursive_queries0 from content;

+ Create a local table using with
+ Add base cases to the table (starter rows, e.g. a row with 0 and 1 if we’re talking

Fibonacci numbers)
+ Reference the table recursively using SELECT statements; have some kind of

stopping point for this recursion as a WHERE condition

create table naturals_leq5 as

 with num(n) as (

 SELECT 0 UNION

 SELECT n + 1 FROM num WHERE n < 5

)

 SELECT * from num;

select local_tables from content;

with [local-tables] select [columns] from [tables]

where [condition] order by [criteria]

Local tables only exist for the sake of the main select statement; think of them as
“helper tables” that just so happen to support recursive construction (which is
generally what we use them for).

select recursive_queries1 from content;

Fibonacci example:

with fibonacci(prev, curr) as (

select 0, 1 union

select curr, prev + curr from fibonacci where curr < 200

) select prev from fibonacci;

We need a stopping point for our recursion!
(hence the < 200)

Recursive SQL - recursive queries

The basic algorithm for computing the content of the recursive table
is as follows:
1. Run the initial-select and add the results to a queue.
2. While the queue is not empty:

a. Extract a single row from the queue.
b. Insert that single row into the recursive table
c. Pretend that the single row just extracted is the only

row in the recursive table and run the recursive-select,
adding all results to the queue.

0

1

2

0

0, 1

30, 1, 2

40, 1, 2, 3

50, 1, 2, 3, 4

0, 1, 2, 3, 4, 5

Step 1

Step 2

finished queue

I stole this slide from Eric Pai (source)

https://docs.google.com/a/berkeley.edu/presentation/d/1YifLs4VOeABuy8dFS4HP953rOVvh6D1hVLiKrKPBf0o/edit?usp=sharing

