
CS 61A Structure and Interpretation of Computer Programs
Fall 2016 Discussion Quiz 7 Solutions

1. (1.5 points) Scheme Primer (Conceptual)

(a) Describe all interpretations of Scheme parentheses that you can think of (in other words, say you see some
parentheses... what could their meaning be?).

Parentheses either denote procedure calls or special forms. Importantly, note that every set of parentheses
counts; you can never leave them out and you can never add more.

(b) On a scale from 1 to 10, where 1 is “not at all” and 10 is “more than anything in the world,” how much
do you like counting parentheses? Select one:

• 10

(c) What is a symbol in Scheme?

Symbols are like code itself – specifically symbols are immutable, interned strings. You can think of them
as variable names; in this way symbols will come in handy where interpreters are concerned!

2. (2 points) WWSP?

scm > ’((list 2 3))

((list 2 3))

scm > (list ’(2 3))

((2 3))

scm > (define x (+))

x

scm > (define y +)

y

scm > (x 3 4)

Error: cannot call: 0

scm > (y 3 4)

7

3. (2.5 points) Box and Pointers

Draw box-and-pointer diagrams for each of the following Scheme lists.

scm > ’(2 . 3 4)

Error; you can only have a single element after a dot!

scm > (cons (list ’(two) ’((3)) nil) 4)



2

scm > (cons 2 ’(list nil))

scm > (list (append ’(2) ’(3) nil) 4)

scm > ’(2 . (3 . (4)))

4. (4 points) Last One

Implement the procedure finish-sort, which takes in a well-formed list lst (of distinct real numbers) and
returns its sorted form. You can assume that lst is almost sorted already, such that exactly one number is
somewhere to the right of where it belongs and everything else is in its relatively proper place. Thus it is
possible to sort the list by shifting a single element to the left. To balance out this relaxation, finish-sort
is only allowed to make one pass over the data, i.e. at most one recursive call per position in the list.

Hint: you may find both the append procedure and the let special form helpful.

(define (finish -sort lst)

(define (cadr lst) (car (cdr lst)))

(define (cddr lst) (cdr (cdr lst)))

(cond

((or (null? lst) (null? (cdr lst))) lst)

((> (car lst) (cadr lst)) (append (list (cadr lst)) (list (car lst)) (cddr lst)))

(else (let ((rest (finish-sort (cdr lst))))

(if (< (car lst) (car rest))

(cons (car lst) rest)

(append (list (car rest)) (list (car lst)) (cdr rest)))))

)

)

Example usage:

scm > (finish -sort ’(2 3 4 5 6 7 1))

(1 2 3 4 5 6 7)

scm > (finish -sort ’(2 1))

(1 2)

scm > (finish -sort ’(2 9 3 11))

(2 3 9 11)


