
CS 61A: Orders of Growth

6 December 2016

Orders of Growth: Boring Text Version

An order of growth is a function describing how something scales (usually a

resource; time or space) with respect to some input.

You’ll hear things like this: “what is the order of growth of <function-name>’s

running time, in terms of <input-name(s)>?”

Common orders of growth:

O(1), O(logn), O(n), O(nlogn), O(nc), O(cn)... [pretty much any mathematical

function of the input can be an order of growth]

Orders of Growth: More Boring Text

Orders of growth allow us to

assert that certain functions run

more quickly (as a function of

their input), or scale better,

than others.

This is what happens when all of

the 170 students run their garbage

O(n4)-time project code on the

instructional machines1 →

1
 This isn’t actually that great a representation of runtime growth, since a bunch of people are probably just looping

indefinitely and running lots of instances.

Orders of Growth: (Also Boring) Visual Examples

A rock; we could
argue that its
growth is an O(1)
function of time

Age increases linearly over
time, of course

The wheat and chessboard problem

A Rough Approximation

We don’t care about small inputs; we can always handle those pretty easily anyway.

We care about what happens as the input size gets REALLY BIG. Small input sizes

aren’t necessarily representative anyway:

(Thanks to Jerome Baek for this great visual!)

A Rough Approximation, continued

Asymptotically, only the highest-order term (or terms if there are multiple input

variables) in the growth function matters. Therefore, that’s the only term we

retain.

ex. n3 + 40000n2.1 + 26 becomes n3

For similar reasons we’ll also omit constant multipliers for that first term (it

helps with standardization, and anyway we want to stay focused on the big –
asymptotic – picture).

65√n + logn + log(logn) becomes √n

Summary So Far

An order of growth is just a function that depicts how stuff (like running time)

scales. O(f(n)) means that aforementioned “stuff” increases no faster than the

f(n)-class of functions as n gets larger and larger. This can be useful for

guaranteeing efficiency in the temporal or spatial domain.

When determining an order of growth, do two things:

1. Drop lower-order terms.

2. Drop multiplicative constants.

Neither descriptor is asymptotically relevant.

Vaguely Mathematical Depiction
(Out of Scope for 61A)

Big-Theta

The definition of Big-Theta:

If we say that the order of growth is

f(n), then there exist positive constants

k
1
 and k

2
 for which the ACTUAL order of

growth is sandwiched between k
1
·f(n) and

k
2
·f(n)... for sufficiently large values

of n.

In this diagram, the “actual” order of growth
is the red line. The blue lines are the upper
and lower bounds.

Big-Theta, cont.

If the growth function (runtime as a

function of input size) is ALWAYS

sandwiched between 0.5n and 1n when n is

really large, then the order of growth

would be Θ(n).

In other words, if k
1
 = 0.5 and k

2
 = 1 in

the diagram to the right, then the

running time can be said to be Θ(n).

Big-O

The definition of Big-O:

If we say that the order of growth is

f(n), then there exists a constant k
2

for which the ACTUAL order of growth is

BELOW k
2
·f(n) for sufficiently large

values of n.

(Basically, it’s only the upper bound.)

Big-O vs Big-Theta

In this class (and in practice), you try

to use Big-O as Big-Theta because it’s

not very informative otherwise (i.e.

pretty much everything is technically

O(nn), but who cares?).

tl;dr Even though Big-O technically only

refers to an upper bound, we want you to

find the “tightest” bound.

Big-O vs Big-Theta

So if k
1
 = 0.5 and k

2
 = 1 in our diagram,

we’d say that the order of growth is Θ
(n) ≈ O(n).

Determining Order of Growth

Approach

If faced with a function of unknown time complexity:

Go through the function line-by-line, determining approximately how much time each

block of code takes as a function of n. Then sum them all together (by “them” I

mean your estimation for each region of code) and drop lower-order terms. That’s

pretty much it.

If there’s recursion (which there will be), figure out how much work there is to

be done in each call and how many calls there’ll be. Then multiply those things

together.

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):

if n <= 1:

return n

return carpe_noctem(n - 1) \

+ carpe_noctem(n - 2)

def yolo(n):

if n <= 1:

return 5

sum = 0

for i in range(n):

sum += carpe_noctem(n)

return sum + yolo(n - 1)

Question: What is the order of growth

in n of the runtime of yolo, where n

is its input?

Answer:

- Well, going through each line...

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):

if n <= 1: # this block is O(1) on its own

return n

return carpe_noctem(n - 1) + carpe_noctem(n - 2) # TWO recursive calls

def yolo(n):

if n <= 1: # this block is O(1) on its own

return 5

sum = 0 # O(1)

for i in range(n): # this block is O(n) times...

sum += carpe_noctem(n) # whatever the OOG of carpe_noctem is

return sum + yolo(n - 1) # and then there’s another recursive call

An Example [Summer 2012 Final | Q2(c)]

Recursive call tree for carpe_noctem (authentic handwritten edition):

An Example [Summer 2012 Final | Q2(c)]

The call tree is a binary tree of depth (n - 1). There are at most 2k+1 - 1 nodes

in a binary tree of depth k, which means that there are at most 2(n-1)+1 - 1 = 2n -

1 nodes in this tree.

Each of these nodes represents a call to carpe_noctem, and we do O(1) work in the

body of each of these calls, so a single carpe_noctem call produces O(2n)

recursive carpe_noctem calls and O(1) * O(2n) = O(2n) work overall. Conclusion:

carpe_noctem’s growth function is O(2n).

An Example [Summer 2012 Final | Q2(c)]

The call sequence for yolo, meanwhile, is a lot simpler. It should be clear from

the above sketch that yolo(n) involves n calls to yolo. Accordingly, we know that

the stuff in the body of yolo happens n times in total.

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):

stuff happens here, but all we need to know is that it’s O(2n)

def yolo(n):

O(1) stuff

for i in range(n): okay, we do the stuff in the loop n times

sum += carpe_noctem(n) # carpe_noctem is O(2n)

return sum + yolo(n - 1) # and then all of this stuff happens n times again

In conclusion: the body of yolo is O(n * 2n), and then that code gets executed n

times. Therefore yolo is, holistically speaking, an O(n * n * 2n) = O(n2 * 2n)

function because that’s how much work we do as a result of one yolo(n) call.

General Heuristics (Not Guarantees!)

Warning: this stuff definitely isn’t always going to be true (especially in the

case of exam questions designed to filter out confused students).

- When there are c recursive calls in the function body (tree recursion), there

tends to be O(cn) calls overall (exponential growth).

- Double-nested for-loops tend to indicate that you’ll do the stuff in the

inner loop n2 times.

- If you make multiplicative progress during every step (e.g. by dividing

problem size by 2 or multiplying something by 3), it’s likely logarithmic

growth.

Individual Function Descriptions (+ Exercises)

Live Answer Submission Link

(Process: I review one classification at a time, and present 2-3 functions after

each one. Your job is to identify the order of growth of each function’s running

time, where the answer will tend to focus on the classifications I’ve already been

through. There may or may not be exceptions, though.)

It’d be great if you guys can anonymously submit your answers as we go, so I can

see how you’re doing and figure out how difficult everything is.

Link to live / anonymous poll: [edit: done through Poll Everywhere, see alt.

version of slides]

DISCLAIMER In the following slides, we treat
the growth function as a runtime descriptor.
However, note that orders of growth can be
used to describe any phenomena that scale as a
function of their inputs (memory is another big
one, for example).

O(1)
Constant time. Best order
of growth for scalability;
runtime is not affected by

the input size.

def const(n):
n = 902 + 54
return ‘hamburger’

O(logn)
Logarithmic time. Amazingly
scalable; a multiplicative
increase in input size
leads to an additive

increase in running time.

def loga(n):
if n <= 1:

return 1
return n * loga(n // 2)

Exercise 1

def mystery1(n):

n, result = str(n), ‘’

num_digits = len(n)

for i in range(num_digits):

result += n[num_digits - i - 1]

return result

def mystery2(n):

n, result = 5, 0

while n <= 3000:

result += mystery1(n // 2)

n += 1

return result

Reminder: we want the order of growth of the runtime a function of n.

Example answers: O(1), O(n), O(n2)...

Exercise 1 Solutions

def mystery1(n):

n, result = str(n), ‘’

num_digits = len(n)

for i in range(num_digits):

result += n[num_digits - i - 1]

return result

O(logn).

Notes: str(n) is O(logn), len(n) is O(1).

def mystery2(n):

n, result = 5, 0

while n <= 3000:

result += mystery1(n // 2)

n += 1

return result

O(1).

Notes: The input n doesn’t even matter!

Exercise 1 Solutions

def mystery1(n):

n, result = str(n), ‘’

num_digits = len(n)

for i in range(num_digits):

result += n[num_digits - i - 1]

return result

O(logn).

I anticipate this one being confusing

(although I would love for you guys to

prove me wrong so I don’t have to use this

slide!). Let’s go through it a bit.

1
 We’re not interested in bit-level complexity here.

1. str(n) is O(logn) because you have to

MULTIPLY n by your radix in order to

ADD one digit to your output string.

2. len(n) is O(1) because Python strings

keep track of their own length, but

you should realize that it’s at worst

O(logn) for the same reasons as 1

(there are only O(logn) digits).

3. Since there are only O(logn) digits,

the loop simply performs

constant-time1 indexing and addition

O(logn) times.

O(√n)
Square-root time, aka

knockoff logarithmic time
(runtime still increases
slowly with input size).
Better than O(n), but

rarely observed.

def sqroot(n):
lim = int(sqrt(n))
for i in range(lim):

n += 45
return n

Exercise 2

def mystery3(n):

if n < 0 or n <= sqrt(n):

return n

return n + mystery3(n // 3)

def mystery5(n):

for _ in range(int(sqrt(n))):

n = 1 + 1

return n

def mystery4(n):

if n < 0 or sqrt(n) <= 50:

return 1

return n * mystery4(n // 2)

Exercise 2 Solutions

def mystery3(n):

if n < 0 or n <= sqrt(n):

return n

return n + mystery3(n // 3)

O(logn). n <= sqrt(n) will only be hit when

0 <= n <= 1.

def mystery5(n):

for _ in range(int(sqrt(n))):

n = 1 + 1

return n

def mystery4(n):

if n < 0 or sqrt(n) <= 50:

return 1

return n * mystery4(n // 2)

O(logn). sqrt(n) <= 50 is equivalent to

n <= 2500, so this ends up being a standard

logarithmic-time algorithm.

O(sqrt(n)). Possible confusion: sqrt(n) is only computed once at the beginning.

O(n)
Linear time. Still very

scalable; adding a constant
to the input size also adds
a constant to the runtime.

def lin(n):
if n <= 1:

return 1
return n + lin(n - 1)

Exercise 3

def mystery6(n):

while n > 1:

x = n

while x > 1:

print(n, x)

x = x // 2

n -= 1

(Thanks to Mark Miyashita for this problem!)

def mystery7(n):

result = 0

for i in range(n // 10):

result += 1

for j in range(10):

result += 1

for k in range(10 // n):

result += 1

return result

Exercise 3 Solutions

def mystery6(n):

while n > 1:

x = n

while x > 1:

print(n, x)

x = x // 2

n -= 1

O(nlogn). Inner loop is O(logn), and it

happens O(n) times.

def mystery7(n):

result = 0

for i in range(n // 10):

result += 1

for j in range(10):

result += 1

for k in range(10 // n):

result += 1

return result

O(n). The number of iterations in the j-loop

is based on a constant, and the k-loop won’t

happen once n is sufficiently large.

O(n2)
Quadratic time. Still

polynomial, so it could be
worse; multiplying input size
by a constant factor ends up
multiplying the runtime by
the square of that factor.

def quad(n):
if n <= 1:

return 1
r = lin(n) * quad(n - 1)
return r

Exercise 4

def mystery8(n):

if n == 0: return ‘’

result, stringified = ‘’, str(n)

for digit in stringified:

for _ in range(n):

result += digit

result += mystery8(n - 1)

return result

def mystery9(n):

total = 0

for i in range(1, n):

total *= 2

if i % n == 0:

total *= mystery9(n - 1)

total *= mystery9(n - 2)

elif i == n // 2:

for j in range(1, n):

total *= j

return total

Exercise 4 Solutions

def mystery8(n):

if n == 0: return ‘’

result, stringified = ‘’, str(n)

for digit in stringified:

for _ in range(n):

result += digit

result += mystery8(n - 1)

return result

O(n2logn). The double-nested loop is nlogn

work. And we run it n times (because of the

recursive mystery8 call).

def mystery9(n):

total = 0

for i in range(1, n):

total *= 2

if i % n == 0:

total *= mystery9(n - 1)

total *= mystery9(n - 2)

elif i == n // 2:

for j in range(1, n):

total *= j

return total

O(n). The first if-statement never happens,

and the second only happens once.

O(2n)
Exponential time. Not

scalable at all; identifies
problems as intractable.
Adding to the input size
multiplies the runtime.

def expo(n):
if n <= 1:

return 1
r1 = expo(n - 1) + 1
r2 = expo(n - 1) + 2
return r1 * r2

A General Timing Comparison

n = 10 n = 50 n = 100 n = 1000

logn 0.0003s 0.0006s 0.0007s 0.0010s

sqrt(n) 0.0003s 0.0007s 0.0010s 0.0032s

n 0.0010s 0.0050s 0.0100s 0.1000s

nlogn 0.0033s 0.0282s 0.0664s 0.9966s

n2 0.0100s 0.2500s 1.0000s 100.00s

n6 1.6667m 18.102d 3.1710y 3171.0c

2n 0.1024s 35.702c 4x1016c 1x10166c

n! 362.88s 1x1051c 3x10144c 1x102554c

← Time required to process n
items at a speed of 10,000
operations per second, using
eight different algorithms

s = seconds
m = minutes
d = days
y = years
c = centuries

Source:
http://www.ccs.neu.edu/home/jaa
/CS7800.12F/Information/Handout
s/order.html

http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html

Graphical Summary

Exercise 5

def mystery10(n):

if n > 0:

r1 = mystery10(-n)

r2 = mystery10(n - 1)

return r1 + r2

return 1

def mystery11(n):

if n < 1: return n

def mystery12(n):

i = 1

while i < n:

i *= 2

return i

return mystery11(n / 2) + mystery11(n / 2) \

+ mystery12(n - 2)

Exercise 5 Solutions

def mystery10(n):

if n > 0:

r1 = mystery10(-n)

r2 = mystery10(n - 1)

return r1 + r2

return 1

O(n). The first recursive call can never go

anywhere.

def mystery11(n):

if n < 1: return n

def mystery12(n):

i = 1

while i < n:

i *= 2

return i

return mystery11(n / 2) + mystery11(n / 2) \

+ mystery12(n - 2)

O(nlogn). We make O(2logn) = O(n) recursive calls,

and each recursive call does logn work.

A Few More Exercises

Exercise 6

def mystery13(m, n):

if n <= 1:

return 0

result = 0

for i in range(3 ** m):

result += i // n

return result + mystery13(m - 5, n // 3)

def mystery14(m, n):

result = 0

for i in range(1, m):

j = i * i

while j <= n:

result, j = result + j, j + 1

return result

The orders of growth should now be functions of m and n.

Exercise 6 Solutions

def mystery13(m, n):

if n <= 1:

return 0

result = 0

for i in range(3 ** m):

result += i // n

return result + mystery13(m - 5, n // 3)

O(3mlogn). Work done in body is O(3m), with

O(log
3
n) calls to the function (bases for logs

don’t matter because a change of base is just

a constant multiplication).

def mystery14(m, n):

result = 0

for i in range(1, m):

j = i * i

while j <= n:

result, j = result + j, j + 1

return result

O(m + n√n). The outer loop happens m times
no matter what (doing guaranteed constant

work), while the inner loop only runs when i

<= √n (i.e. it does n work √n times).

The orders of growth should now be functions of m and n.

Exercise 7

Define n to be the length of the input list. How much memory does the following program use

as a function of n?

def weighted_random_choice(lst):

temp = []

for i in range(len(lst)):

temp.extend([lst[i]] * (i + 1))

return random.choice(temp)

Exercise 7 Solutions

Define n to be the length of the input list. How much memory does the following program use

as a function of n?

def weighted_random_choice(lst):

temp = []

for i in range(len(lst)):

temp.extend([lst[i]] * (i + 1))

return random.choice(temp)

O(n2). The length of the temporary list is 1 + 2 + 3 + … + n, which we know (through Gauss’s

summing trick) is equal to n(n + 1) / 2 = O(n2).

Exercise 8

Provide an algorithm that, given a

sorted list A of distinct integers,

determines whether there is an index i

for which A[i] = i. Your algorithm

should run in time O(logn), where n is

the length of the list. You don’t have

to write actual code for this;

pseudocode or a general approach would

be sufficient.

Thanks to CS 170 for the question description!

If you want to write code, there’s a skeleton to the

right.

def index_exists(A):

def helper(lower, upper):

if _________________________________:

return ________________________

mid_idx = (lower + upper) // 2

if _________________________________:

return True

elif _______________________________:

return ________________________

else:

return ________________________

return __________________________________

Exercise 8 Solutions

Provide an algorithm that, given a

sorted list A of distinct integers,

determines whether there is an index i

for which A[i] = i. Your algorithm

should run in time O(logn), where n is

the length of the list. You don’t have

to write actual code for this;

pseudocode or a general approach would

be sufficient.

Thanks to CS 170 for the question description!

If you want to write code, there’s a skeleton to the

right.

def index_exists(A):

def helper(lower, upper):

if lower >= upper:

return A[upper] == upper

mid_idx = (lower + upper) // 2

if A[mid_idx] == mid_idx:

return True

elif A[mid_idx] > mid_idx:

return helper(lower, mid_idx - 1)

else:

return helper(mid_idx + 1, upper)

return helper(0, len(A) - 1)

NOTE I intended for these problems to be very
tricky. (At the time of me writing this, I’m not
sure whether I succeeded.) That being said,
some of these questions are probably slightly
above the level of difficulty you’d expect on the
final. Even if you didn’t get a lot of them, you
might not have to worry TOO much.

Past Exam Questions

Summer 2013 MT2 | Q2(a)

def fizzle(n):

if n <= 0:

return n

elif n % 23 == 0:

return n

return fizzle(n - 1)

What is the order of growth for a call to fizzle(n)?

Summer 2013 MT2 | Q2(a) Solutions

def fizzle(n):

if n <= 0:

return n

elif n % 23 == 0: # this line ensures that fizzle will never be called more than 23 times

return n

return fizzle(n - 1)

What is the order of growth for a call to fizzle(n)?

Answer: O(1).

Summer 2013 MT2 | Q2(b)

def boom(n):

if n == 0: return ‘BOOM!’

return boom(n - 1)

def explode(n):

if n == 0: return boom(n)

i = 0

while i < n:

boom(n)

i += 1

return boom(n)

What is the order of growth for a call to explode(n)?

Summer 2013 MT2 | Q2(b) Solutions

def boom(n):

if n == 0: return ‘BOOM!’

return boom(n - 1)

def explode(n):

if n == 0: return boom(n)

i = 0

while i < n:

boom(n) # n work (happening n times because of the loop)

i += 1

return boom(n)

What is the order of growth for a call to explode(n)? O(n2).

Summer 2013 MT2 | Q2(c)

def dreams(n):

if n <= 0:

return n

if n > 0:

return n + dreams(n // 2)

What is the order of growth for a call to dreams(n)?

Summer 2013 MT2 | Q2(c) Solutions

def dreams(n):

if n <= 0:

return n

if n > 0:

return n + dreams(n // 2) # divide the problem in half every time

What is the order of growth for a call to dreams(n)?

Answer: O(logn).

Spring 2014 MT2 | Q6(a)

Consider the following function (assume that parameter S is a list):

def umatches(S):

result = set()

for item in S:

if item in result:

result.remove(item)

else:

result.add(item)

return result

Fill in the blank: The function umatches returns the set of all

___.

Spring 2014 MT2 | Q6(a) Solutions

Consider the following function (assume that parameter S is a list):

def umatches(S):

result = set()

for item in S:

if item in result:

result.remove(item)

else:

result.add(item)

return result

Fill in the blank: The function umatches returns the set of all

values in S that occur an odd number of times.

Spring 2014 MT2 | Q6(b)

def umatches(S):

result = set()

for item in S:

if item in result:

result.remove(item)

else:

result.add(item)

return result

Let’s assume that the operations of adding to, removing from, or checking containment in a

set each take roughly constant time. Give an asymptotic bound (the tightest you can) on the

worst-case time for umatches as a function of N = len(S).

Spring 2014 MT2 | Q6(b) Solutions

def umatches(S):

result = set()

for item in S: # this is why it’s O(N)

if item in result:

result.remove(item)

else:

result.add(item)

return result

Let’s assume that the operations of adding to, removing from, or checking containment in a

set each take roughly constant time. Give an asymptotic bound (the tightest you can) on the

worst-case time for umatches as a function of N = len(S).

Answer: O(N).

Spring 2014 MT2 | Q6(c)

def umatches(S):

result = []

for item in S:

if item in result:

result.remove(item)

else:

result.append(item)

return result

Suppose that instead of having result be a set, we

make it a list (so that it is initialized to [] and

we use .append to add an item; changes shown to the

left). What now is the worst-case time bound? You

can assume that .append is a constant-time

operation, and .remove and the in operator require

time that is Θ(L) in the worst case, where L is the
length of the list operated on. Since we never add

an item that is already in the list, each value

appears at most once, just as for a Python set.

Spring 2014 MT2 | Q6(c) Solutions

def umatches(S):

result = []

for item in S:

if item in result:

result.remove(item)

else:

result.append(item)

return result

Suppose that instead of having result be a set, we

make it a list (so that it is initialized to [] and

we use .append to add an item; changes shown to the

left). What now is the worst-case time bound? You

can assume that .append is a constant-time

operation, and .remove and the in operator require

time that is Θ(L) in the worst case, where L is the
length of the list operated on. Since we never add

an item that is already in the list, each value

appears at most once, just as for a Python set.

Answer: O(N2). In the worst case, where every item in S is the same, you have to do two Θ(L)
operations (in and .remove) for N / 2 items in S. Since L is really O(N), we have an O(N2)
function overall.

Spring 2014 MT2 | Q6(d)

def umatches(S):

result = []

for item in S:

if item in result:

result.remove(item)

else:

result.append(item)

return result

Now suppose that we consider only cases where the number of different values in list S is at

most 100, and we again use a list for result. What is the worst-case time now?

Spring 2014 MT2 | Q6(d) Solutions

def umatches(S):

result = []

for item in S:

if item in result:

result.remove(item)

else:

result.append(item)

return result

Now suppose that we consider only cases where the number of different values in list S is at

most 100, and we again use a list for result. What is the worst-case time now?

Answer: O(N). L is now upper bounded by 100, so Θ(L) becomes Θ(1).

Summer 2015 MT2 | Q5(d)

def append(link, value):

"""Mutates LINK by adding VALUE to

the end of LINK.

"""

if link.rest is Link.empty:

link.rest = Link(value)

else:

append(link.rest, value)

def extend(link1, link2):

"""Mutates LINK_1 so that all

elements of LINK_2 are added to the

end of LINK_1.

"""

while link2 is not Link.empty:

append(link1, link2.first)

link2 = link2.rest

(i) What order of growth describes the runtime of calling append? Give your function in terms

of n, where n is the number of elements in the input LINK.

(ii) Assuming the two input linked lists both contain n elements, what order of growth best

describes the runtime of calling extend?

Summer 2015 MT2 | Q5(d) Solutions

def append(link, value):

"""Mutates LINK by adding VALUE to

the end of LINK.

"""

if link.rest is Link.empty:

link.rest = Link(value)

else:

append(link.rest, value)

def extend(link1, link2):

"""Mutates LINK_1 so that all

elements of LINK_2 are added to the

end of LINK_1.

"""

while link2 is not Link.empty:

append(link1, link2.first)

link2 = link2.rest

(i) What order of growth describes the runtime of calling append? Give your function in terms

of n, where n is the number of elements in the input LINK. Answer: O(n).

(ii) Assuming the two input linked lists both contain n elements, what order of growth best

describes the runtime of calling extend? Answer: O(n2).

Summer 2012 Final | Q2(a)

def collide(n):

lst = []

for i in range(n):

lst.append(i)

if n <= 1:

return 1

if n <= 50:

return collide(n - 1) + collide(n - 2)

elif n > 50:

return collide(50) + collide(49)

What is the order of growth in n of the runtime of collide, where n is its input?

Summer 2012 Final | Q2(a) Solutions

def collide(n):

lst = []

for i in range(n): # O(n) block of code right here

lst.append(i)

if n <= 1:

return 1

if n <= 50:

return collide(n - 1) + collide(n - 2)

elif n > 50: # this covers the case we’re interested in (really large n)

return collide(50) + collide(49)

What is the order of growth in n of the runtime of collide, where n is its input?

Answer: O(n). For large n, it performs an O(n) list initialization and then runs collide(50)

+ collide(49). Since 50 and 49 are constants, that part’s runtime is irrespective of n.

Summer 2012 Final | Q2(b)

def crash(n):

if n < 1:

return n

return crash(n - 1) * n

def into_me(n):

lst = []

for i in range(n):

lst.append(i)

sum = 0

for elem in lst:

sum = sum + crash(n) + crash(n)

return sum

What is the order of growth in n of the runtime

of into_me, where n is its input?

Summer 2012 Final | Q2(b) Solutions

def crash(n): # O(n) function

if n < 1:

return n

return crash(n - 1) * n

def into_me(n):

lst = []

for i in range(n): # O(n)

lst.append(i)

sum = 0

for elem in lst: # do n times:

sum = sum + crash(n) + crash(n)

return sum

What is the order of growth in n of the runtime

of into_me, where n is its input?

Answer: O(n2). We make 2n crash calls per into_me

call, and the growth function of crash is O(n).

Spring 2014 Final | Q5(c)

Give worst-case asymptotic Θ(·) bounds – you guys can write them as O(·) bounds – for the
running time of the following code snippets. As a reminder, it is meaningful to write things

with multiple arguments like Θ(a + b), which you can think of as “Θ(N) where N = a + b.”

def a(m, n):

for i in range(m):

for j in range(n // 100):

print(“hi”)

def b(m, n):

for i in range(m // 3):

print(“hi”)

for j in range(n * 5):

print(“bye”)

def d(m, n):

for i in range(m):

j = 0

while j < i: j = j + 100

def f(m):

i = 1

while i < m:

i = i * 2

return i

Spring 2014 Final | Q5(c) Solutions

Give worst-case asymptotic Θ(·) bounds – you guys can write them as O(·) bounds – for the
running time of the following code snippets. As a reminder, it is meaningful to write things

with multiple arguments like Θ(a + b), which you can think of as “Θ(N) where N = a + b.”

def a(m, n): # Answer: O(mn).

for i in range(m):

for j in range(n // 100):

print(“hi”)

def b(m, n): # Answer: O(m + n).

for i in range(m // 3):

print(“hi”)

for j in range(n * 5):

print(“bye”)

def d(m, n): # Answer: O(m2).

for i in range(m): # essentially 1 + … + m work

j = 0

while j < i: j = j + 100

def f(m): # Answer: O(logm).

i = 1

while i < m:

i = i * 2

return i

Thanks, everyone!
Good luck on the final.

Recommended Reading

Unfortunately a late addition to these slides – but the 61A wiki has a pretty nice
writeup on orders of growth.

https://www.ocf.berkeley.edu/~shidi/cs61a/wiki/Order_of_growth
https://www.ocf.berkeley.edu/~shidi/cs61a/wiki/Order_of_growth

