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Orders of Growth: Boring Text Version

An order of growth is a function describing how something scales (usually a 

resource; time or space) with respect to some input.

You’ll hear things like this: “what is the order of growth of <function-name>’s 

running time, in terms of <input-name(s)>?”

Common orders of growth:

O(1), O(logn), O(n), O(nlogn), O(nc), O(cn)... [pretty much any mathematical 

function of the input can be an order of growth]



Orders of Growth: More Boring Text

Orders of growth allow us to 

assert that certain functions run 

more quickly (as a function of 

their input), or scale better, 

than others.

This is what happens when all of 

the 170 students run their garbage 

O(n4)-time project code on the 

instructional machines1 → 

1
 This isn’t actually that great a representation of runtime growth, since a bunch of people are probably just looping 

indefinitely and running lots of instances.



Orders of Growth: (Also Boring) Visual Examples

A rock; we could 
argue that its 
growth is an O(1) 
function of time

Age increases linearly over 
time, of course

The wheat and chessboard problem



A Rough Approximation

We don’t care about small inputs; we can always handle those pretty easily anyway. 

We care about what happens as the input size gets REALLY BIG. Small input sizes 

aren’t necessarily representative anyway:

(Thanks to Jerome Baek for this great visual!)



A Rough Approximation, continued

Asymptotically, only the highest-order term (or terms if there are multiple input 

variables) in the growth function matters. Therefore, that’s the only term we 

retain.

ex. n3 + 40000n2.1 + 26 becomes n3

For similar reasons we’ll also omit constant multipliers for that first term (it 

helps with standardization, and anyway we want to stay focused on the big – 
asymptotic – picture).

65√n + logn + log(logn) becomes √n



Summary So Far

An order of growth is just a function that depicts how stuff (like running time) 

scales. O(f(n)) means that aforementioned “stuff” increases no faster than the 

f(n)-class of functions as n gets larger and larger. This can be useful for 

guaranteeing efficiency in the temporal or spatial domain.

When determining an order of growth, do two things:

1. Drop lower-order terms.

2. Drop multiplicative constants.

Neither descriptor is asymptotically relevant.



Vaguely Mathematical Depiction
(Out of Scope for 61A)



Big-Theta

The definition of Big-Theta:

If we say that the order of growth is 

f(n), then there exist positive constants 

k
1
 and k

2
 for which the ACTUAL order of 

growth is sandwiched between k
1
·f(n) and 

k
2
·f(n)... for sufficiently large values 

of n.

In this diagram, the “actual” order of growth 
is the red line. The blue lines are the upper 
and lower bounds. 



Big-Theta, cont.

If the growth function (runtime as a 

function of input size) is ALWAYS 

sandwiched between 0.5n and 1n when n is 

really large, then the order of growth 

would be Θ(n).

In other words, if k
1
 = 0.5 and k

2
 = 1 in 

the diagram to the right, then the 

running time can be said to be Θ(n).



Big-O

The definition of Big-O:

If we say that the order of growth is 

f(n), then there exists a constant k
2
 

for which the ACTUAL order of growth is 

BELOW k
2
·f(n) for sufficiently large 

values of n.

(Basically, it’s only the upper bound.)



Big-O vs Big-Theta

In this class (and in practice), you try 

to use Big-O as Big-Theta because it’s 

not very informative otherwise (i.e. 

pretty much everything is technically 

O(nn), but who cares?).

tl;dr Even though Big-O technically only 

refers to an upper bound, we want you to 

find the “tightest” bound.



Big-O vs Big-Theta

So if k
1
 = 0.5 and k

2
 = 1 in our diagram, 

we’d say that the order of growth is Θ
(n) ≈ O(n).



Determining Order of Growth



Approach

If faced with a function of unknown time complexity:

Go through the function line-by-line, determining approximately how much time each 

block of code takes as a function of n. Then sum them all together (by “them” I 

mean your estimation for each region of code) and drop lower-order terms. That’s 

pretty much it.

If there’s recursion (which there will be), figure out how much work there is to 

be done in each call and how many calls there’ll be. Then multiply those things 

together.



An Example [Summer 2012 Final  |  Q2(c)]

def carpe_noctem(n):

if n <= 1:

return n

return carpe_noctem(n - 1) \

+ carpe_noctem(n - 2)

def yolo(n):

if n <= 1:

return 5

sum = 0

for i in range(n):

sum += carpe_noctem(n)

return sum + yolo(n - 1)

Question: What is the order of growth 

in n of the runtime of yolo, where n 

is its input?

Answer:

- Well, going through each line...



An Example [Summer 2012 Final  |  Q2(c)]

def carpe_noctem(n):

if n <= 1: # this block is O(1) on its own

return n

return carpe_noctem(n - 1) + carpe_noctem(n - 2) # TWO recursive calls

def yolo(n):

if n <= 1: # this block is O(1) on its own

return 5

sum = 0 # O(1)

for i in range(n): # this block is O(n) times...

sum += carpe_noctem(n) # whatever the OOG of carpe_noctem is

return sum + yolo(n - 1) # and then there’s another recursive call



An Example [Summer 2012 Final  |  Q2(c)]

Recursive call tree for carpe_noctem (authentic handwritten edition):



An Example [Summer 2012 Final  |  Q2(c)]

The call tree is a binary tree of depth (n - 1). There are at most 2k+1 - 1 nodes 

in a binary tree of depth k, which means that there are at most 2(n-1)+1 - 1 = 2n - 

1 nodes in this tree.

Each of these nodes represents a call to carpe_noctem, and we do O(1) work in the 

body of each of these calls, so a single carpe_noctem call produces O(2n) 

recursive carpe_noctem calls and O(1) * O(2n) = O(2n) work overall. Conclusion: 

carpe_noctem’s growth function is O(2n).



An Example [Summer 2012 Final  |  Q2(c)]

The call sequence for yolo, meanwhile, is a lot simpler. It should be clear from 

the above sketch that yolo(n) involves n calls to yolo. Accordingly, we know that 

the stuff in the body of yolo happens n times in total.



An Example [Summer 2012 Final  |  Q2(c)]

def carpe_noctem(n):

# stuff happens here, but all we need to know is that it’s O(2n)

def yolo(n):

# O(1) stuff

for i in range(n): okay, we do the stuff in the loop n times

sum += carpe_noctem(n) # carpe_noctem is O(2n)

return sum + yolo(n - 1) # and then all of this stuff happens n times again

In conclusion: the body of yolo is O(n * 2n), and then that code gets executed n 

times. Therefore yolo is, holistically speaking, an O(n * n * 2n) = O(n2 * 2n) 

function because that’s how much work we do as a result of one yolo(n) call.



General Heuristics (Not Guarantees!)

Warning: this stuff definitely isn’t always going to be true (especially in the 

case of exam questions designed to filter out confused students).

- When there are c recursive calls in the function body (tree recursion), there 

tends to be O(cn) calls overall (exponential growth).

- Double-nested for-loops tend to indicate that you’ll do the stuff in the 

inner loop n2 times.

- If you make multiplicative progress during every step (e.g. by dividing 

problem size by 2 or multiplying something by 3), it’s likely logarithmic 

growth.



Individual Function Descriptions (+ Exercises)



Live Answer Submission Link

(Process: I review one classification at a time, and present 2-3 functions after 

each one. Your job is to identify the order of growth of each function’s running 

time, where the answer will tend to focus on the classifications I’ve already been 

through. There may or may not be exceptions, though.)

It’d be great if you guys can anonymously submit your answers as we go, so I can 

see how you’re doing and figure out how difficult everything is.

Link to live / anonymous poll: [edit: done through Poll Everywhere, see alt. 

version of slides]



DISCLAIMER   In the following slides, we treat 
the growth function as a runtime descriptor. 
However, note that orders of growth can be 
used to describe any phenomena that scale as a 
function of their inputs (memory is another big 
one, for example).



O(1)
Constant time. Best order 
of growth for scalability; 
runtime is not affected by 

the input size.

def const(n):
n = 902 + 54
return ‘hamburger’



O(logn)
Logarithmic time. Amazingly 
scalable; a multiplicative 
increase in input size 
leads to an additive 

increase in running time. 

def loga(n):
if n <= 1:

return 1
return n * loga(n // 2)



Exercise 1

def mystery1(n):

n, result = str(n), ‘’

num_digits = len(n)

for i in range(num_digits):

result += n[num_digits - i - 1]

return result

def mystery2(n):

n, result = 5, 0

while n <= 3000:

result += mystery1(n // 2)

n += 1

return result

Reminder: we want the order of growth of the runtime a function of n.

Example answers: O(1), O(n), O(n2)...



Exercise 1 Solutions

def mystery1(n):

n, result = str(n), ‘’

num_digits = len(n)

for i in range(num_digits):

result += n[num_digits - i - 1]

return result

O(logn).

Notes: str(n) is O(logn), len(n) is O(1).

def mystery2(n):

n, result = 5, 0

while n <= 3000:

result += mystery1(n // 2)

n += 1

return result

O(1).

Notes: The input n doesn’t even matter!



Exercise 1 Solutions

def mystery1(n):

n, result = str(n), ‘’

num_digits = len(n)

for i in range(num_digits):

result += n[num_digits - i - 1]

return result

O(logn).

I anticipate this one being confusing 

(although I would love for you guys to 

prove me wrong so I don’t have to use this 

slide!). Let’s go through it a bit.

1
 We’re not interested in bit-level complexity here.

1. str(n) is O(logn) because you have to 

MULTIPLY n by your radix in order to 

ADD one digit to your output string.

2. len(n) is O(1) because Python strings 

keep track of their own length, but 

you should realize that it’s at worst 

O(logn) for the same reasons as 1 

(there are only O(logn) digits).

3. Since there are only O(logn) digits, 

the loop simply performs 

constant-time1 indexing and addition 

O(logn) times.



O(√n)
Square-root time, aka 

knockoff logarithmic time 
(runtime still increases 
slowly with input size). 
Better than O(n), but 

rarely observed.

def sqroot(n):
lim = int(sqrt(n))
for i in range(lim):

n += 45
return n



Exercise 2

def mystery3(n):

if n < 0 or n <= sqrt(n):

return n

return n + mystery3(n // 3)

def mystery5(n):

for _ in range(int(sqrt(n))):

n = 1 + 1

return n

def mystery4(n):

if n < 0 or sqrt(n) <= 50:

return 1

return n * mystery4(n // 2)



Exercise 2 Solutions

def mystery3(n):

if n < 0 or n <= sqrt(n):

return n

return n + mystery3(n // 3)

O(logn). n <= sqrt(n) will only be hit when 

0 <= n <= 1.

def mystery5(n):

for _ in range(int(sqrt(n))):

n = 1 + 1

return n

def mystery4(n):

if n < 0 or sqrt(n) <= 50:

return 1

return n * mystery4(n // 2)

O(logn). sqrt(n) <= 50 is equivalent to

n <= 2500, so this ends up being a standard 

logarithmic-time algorithm.

O(sqrt(n)). Possible confusion: sqrt(n) is only computed once at the beginning.



O(n)
Linear time. Still very 

scalable; adding a constant 
to the input size also adds 
a constant to the runtime.

def lin(n):
if n <= 1:

return 1
return n + lin(n - 1)



Exercise 3

def mystery6(n):

while n > 1:

x = n

while x > 1:

print(n, x)

x = x // 2

n -= 1

(Thanks to Mark Miyashita for this problem!)

def mystery7(n):

result = 0

for i in range(n // 10):

result += 1

for j in range(10):

result += 1

for k in range(10 // n):

result += 1

return result



Exercise 3 Solutions

def mystery6(n):

while n > 1:

x = n

while x > 1:

print(n, x)

x = x // 2

n -= 1

O(nlogn). Inner loop is O(logn), and it 

happens O(n) times.

def mystery7(n):

result = 0

for i in range(n // 10):

result += 1

for j in range(10):

result += 1

for k in range(10 // n):

result += 1

return result

O(n). The number of iterations in the j-loop 

is based on a constant, and the k-loop won’t 

happen once n is sufficiently large.



O(n2)
Quadratic time. Still 

polynomial, so it could be 
worse; multiplying input size 
by a constant factor ends up 
multiplying the runtime by 
the square of that factor.

def quad(n):
if n <= 1:

return 1
r = lin(n) * quad(n - 1)
return r



Exercise 4

def mystery8(n):

if n == 0: return ‘’

result, stringified = ‘’, str(n)

for digit in stringified:

for _ in range(n):

result += digit

result += mystery8(n - 1)

return result

def mystery9(n):

total = 0

for i in range(1, n):

total *= 2

if i % n == 0:

total *= mystery9(n - 1)

total *= mystery9(n - 2)

elif i == n // 2:

for j in range(1, n):

total *= j

return total



Exercise 4 Solutions

def mystery8(n):

if n == 0: return ‘’

result, stringified = ‘’, str(n)

for digit in stringified:

for _ in range(n):

result += digit

result += mystery8(n - 1)

return result

O(n2logn). The double-nested loop is nlogn 

work. And we run it n times (because of the 

recursive mystery8 call).

def mystery9(n):

total = 0

for i in range(1, n):

total *= 2

if i % n == 0:

total *= mystery9(n - 1)

total *= mystery9(n - 2)

elif i == n // 2:

for j in range(1, n):

total *= j

return total

O(n). The first if-statement never happens, 

and the second only happens once.



O(2n)
Exponential time. Not 

scalable at all; identifies 
problems as intractable. 
Adding to the input size 
multiplies the runtime.

def expo(n):
if n <= 1:

return 1
r1 = expo(n - 1) + 1
r2 = expo(n - 1) + 2
return r1 * r2



A General Timing Comparison

n = 10 n = 50 n = 100 n = 1000

logn 0.0003s 0.0006s 0.0007s 0.0010s

sqrt(n) 0.0003s 0.0007s 0.0010s 0.0032s

n 0.0010s 0.0050s 0.0100s 0.1000s

nlogn 0.0033s 0.0282s 0.0664s 0.9966s

n2 0.0100s 0.2500s 1.0000s 100.00s

n6 1.6667m 18.102d 3.1710y 3171.0c

2n 0.1024s 35.702c 4x1016c 1x10166c

n! 362.88s 1x1051c 3x10144c 1x102554c

← Time required to process n 
items at a speed of 10,000 
operations per second, using 
eight different algorithms

s = seconds
m = minutes
d = days
y = years
c = centuries

Source: 
http://www.ccs.neu.edu/home/jaa
/CS7800.12F/Information/Handout
s/order.html

http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html


Graphical Summary



Exercise 5

def mystery10(n):

if n > 0:

r1 = mystery10(-n)

r2 = mystery10(n - 1)

return r1 + r2

return 1

def mystery11(n):

if n < 1: return n

def mystery12(n):

i = 1

while i < n:

i *= 2

return i

return mystery11(n / 2) + mystery11(n / 2) \

+ mystery12(n - 2)



Exercise 5 Solutions

def mystery10(n):

if n > 0:

r1 = mystery10(-n)

r2 = mystery10(n - 1)

return r1 + r2

return 1

O(n). The first recursive call can never go 

anywhere.

def mystery11(n):

if n < 1: return n

def mystery12(n):

i = 1

while i < n:

i *= 2

return i

return mystery11(n / 2) + mystery11(n / 2) \

+ mystery12(n - 2)

O(nlogn). We make O(2logn) = O(n) recursive calls, 

and each recursive call does logn work.



A Few More Exercises



Exercise 6

def mystery13(m, n):

if n <= 1:

return 0

result = 0

for i in range(3 ** m):

result += i // n

return result + mystery13(m - 5, n // 3)

def mystery14(m, n):

result = 0

for i in range(1, m):

j = i * i

while j <= n:

result, j = result + j, j + 1

return result

The orders of growth should now be functions of m and n.



Exercise 6 Solutions

def mystery13(m, n):

if n <= 1:

return 0

result = 0

for i in range(3 ** m):

result += i // n

return result + mystery13(m - 5, n // 3)

O(3mlogn). Work done in body is O(3m), with 

O(log
3
n) calls to the function (bases for logs 

don’t matter because a change of base is just 

a constant multiplication).

def mystery14(m, n):

result = 0

for i in range(1, m):

j = i * i

while j <= n:

result, j = result + j, j + 1

return result

O(m + n√n). The outer loop happens m times 
no matter what (doing guaranteed constant 

work), while the inner loop only runs when i 

<= √n (i.e. it does n work √n times).

The orders of growth should now be functions of m and n.



Exercise 7

Define n to be the length of the input list. How much memory does the following program use 

as a function of n?

def weighted_random_choice(lst):

temp = []

for i in range(len(lst)):

temp.extend([lst[i]] * (i + 1))

return random.choice(temp)



Exercise 7 Solutions

Define n to be the length of the input list. How much memory does the following program use 

as a function of n?

def weighted_random_choice(lst):

temp = []

for i in range(len(lst)):

temp.extend([lst[i]] * (i + 1))

return random.choice(temp)

O(n2). The length of the temporary list is 1 + 2 + 3 + … + n, which we know (through Gauss’s 

summing trick) is equal to n(n + 1) / 2 = O(n2).



Exercise 8

Provide an algorithm that, given a 

sorted list A of distinct integers, 

determines whether there is an index i 

for which A[i] = i. Your algorithm 

should run in time O(logn), where n is 

the length of the list. You don’t have 

to write actual code for this; 

pseudocode or a general approach would 

be sufficient.

Thanks to CS 170 for the question description!

If you want to write code, there’s a skeleton to the 

right.

def index_exists(A):

def helper(lower, upper):

if _________________________________:

return ________________________

mid_idx = (lower + upper) // 2

if _________________________________:

return True

elif _______________________________:

return ________________________

else:

return ________________________

return __________________________________



Exercise 8 Solutions

Provide an algorithm that, given a 

sorted list A of distinct integers, 

determines whether there is an index i 

for which A[i] = i. Your algorithm 

should run in time O(logn), where n is 

the length of the list. You don’t have 

to write actual code for this; 

pseudocode or a general approach would 

be sufficient.

Thanks to CS 170 for the question description!

If you want to write code, there’s a skeleton to the 

right.

def index_exists(A):

def helper(lower, upper):

if lower >= upper:

return A[upper] == upper

mid_idx = (lower + upper) // 2

if A[mid_idx] == mid_idx:

return True

elif A[mid_idx] > mid_idx:

return helper(lower, mid_idx - 1)

else:

return helper(mid_idx + 1, upper)

return helper(0, len(A) - 1)



NOTE   I intended for these problems to be very 
tricky. (At the time of me writing this, I’m not 
sure whether I succeeded.) That being said, 
some of these questions are probably slightly 
above the level of difficulty you’d expect on the 
final. Even if you didn’t get a lot of them, you 
might not have to worry TOO much.



Past Exam Questions



Summer 2013 MT2  |  Q2(a)

def fizzle(n):

if n <= 0:

return n

elif n % 23 == 0:

return n

return fizzle(n - 1)

What is the order of growth for a call to fizzle(n)?



Summer 2013 MT2  |  Q2(a) Solutions

def fizzle(n):

if n <= 0:

return n

elif n % 23 == 0: # this line ensures that fizzle will never be called more than 23 times

return n

return fizzle(n - 1)

What is the order of growth for a call to fizzle(n)?

Answer: O(1).



Summer 2013 MT2  |  Q2(b)

def boom(n):

if n == 0: return ‘BOOM!’

return boom(n - 1)

def explode(n):

if n == 0: return boom(n)

i = 0

while i < n:

boom(n)

i += 1

return boom(n)

What is the order of growth for a call to explode(n)?



Summer 2013 MT2  |  Q2(b) Solutions

def boom(n):

if n == 0: return ‘BOOM!’

return boom(n - 1)

def explode(n):

if n == 0: return boom(n)

i = 0

while i < n:

boom(n) # n work (happening n times because of the loop)

i += 1

return boom(n)

What is the order of growth for a call to explode(n)? O(n2).



Summer 2013 MT2  |  Q2(c)

def dreams(n):

if n <= 0:

return n

if n > 0:

return n + dreams(n // 2)

What is the order of growth for a call to dreams(n)?



Summer 2013 MT2  |  Q2(c) Solutions

def dreams(n):

if n <= 0:

return n

if n > 0:

return n + dreams(n // 2) # divide the problem in half every time

What is the order of growth for a call to dreams(n)?

Answer: O(logn).



Spring 2014 MT2  |  Q6(a)

Consider the following function (assume that parameter S is a list):

def umatches(S):

result = set()

for item in S:

if item in result:

result.remove(item)

else:

result.add(item)

return result

Fill in the blank: The function umatches returns the set of all

_________________________________________________________________________.



Spring 2014 MT2  |  Q6(a) Solutions

Consider the following function (assume that parameter S is a list):

def umatches(S):

result = set()

for item in S:

if item in result:

result.remove(item)

else:

result.add(item)

return result

Fill in the blank: The function umatches returns the set of all

values in S that occur an odd number of times.



Spring 2014 MT2  |  Q6(b)

def umatches(S):

result = set()

for item in S:

if item in result:

result.remove(item)

else:

result.add(item)

return result

Let’s assume that the operations of adding to, removing from, or checking containment in a 

set each take roughly constant time. Give an asymptotic bound (the tightest you can) on the 

worst-case time for umatches as a function of N = len(S).



Spring 2014 MT2  |  Q6(b) Solutions

def umatches(S):

result = set()

for item in S: # this is why it’s O(N)

if item in result:

result.remove(item)

else:

result.add(item)

return result

Let’s assume that the operations of adding to, removing from, or checking containment in a 

set each take roughly constant time. Give an asymptotic bound (the tightest you can) on the 

worst-case time for umatches as a function of N = len(S).

Answer: O(N).



Spring 2014 MT2  |  Q6(c)

def umatches(S):

result = []

for item in S:

if item in result:

result.remove(item)

else:

result.append(item)

return result

Suppose that instead of having result be a set, we 

make it a list (so that it is initialized to [] and 

we use .append to add an item; changes shown to the 

left). What now is the worst-case time bound? You 

can assume that .append is a constant-time 

operation, and .remove and the in operator require 

time that is Θ(L) in the worst case, where L is the 
length of the list operated on. Since we never add 

an item that is already in the list, each value 

appears at most once, just as for a Python set.



Spring 2014 MT2  |  Q6(c) Solutions

def umatches(S):

result = []

for item in S:

if item in result:

result.remove(item)

else:

result.append(item)

return result

Suppose that instead of having result be a set, we 

make it a list (so that it is initialized to [] and 

we use .append to add an item; changes shown to the 

left). What now is the worst-case time bound? You 

can assume that .append is a constant-time 

operation, and .remove and the in operator require 

time that is Θ(L) in the worst case, where L is the 
length of the list operated on. Since we never add 

an item that is already in the list, each value 

appears at most once, just as for a Python set.

Answer: O(N2). In the worst case, where every item in S is the same, you have to do two Θ(L) 
operations (in and .remove) for N / 2 items in S. Since L is really O(N), we have an O(N2) 
function overall.



Spring 2014 MT2  |  Q6(d)

def umatches(S):

result = []

for item in S:

if item in result:

result.remove(item)

else:

result.append(item)

return result

Now suppose that we consider only cases where the number of different values in list S is at 

most 100, and we again use a list for result. What is the worst-case time now?
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def umatches(S):

result = []

for item in S:

if item in result:

result.remove(item)

else:

result.append(item)

return result

Now suppose that we consider only cases where the number of different values in list S is at 

most 100, and we again use a list for result. What is the worst-case time now?

Answer: O(N). L is now upper bounded by 100, so Θ(L) becomes Θ(1).
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def append(link, value):

"""Mutates LINK by adding VALUE to 

the end of LINK.

"""

if link.rest is Link.empty:

link.rest = Link(value)

else:

append(link.rest, value)

def extend(link1, link2):

"""Mutates LINK_1 so that all 

elements of LINK_2 are added to the 

end of LINK_1.

"""

while link2 is not Link.empty:

append(link1, link2.first)

link2 = link2.rest

(i) What order of growth describes the runtime of calling append? Give your function in terms 

of n, where n is the number of elements in the input LINK.

(ii) Assuming the two input linked lists both contain n elements, what order of growth best 

describes the runtime of calling extend?
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def append(link, value):

"""Mutates LINK by adding VALUE to 

the end of LINK.

"""

if link.rest is Link.empty:

link.rest = Link(value)

else:

append(link.rest, value)

def extend(link1, link2):

"""Mutates LINK_1 so that all 

elements of LINK_2 are added to the 

end of LINK_1.

"""

while link2 is not Link.empty:

append(link1, link2.first)

link2 = link2.rest

(i) What order of growth describes the runtime of calling append? Give your function in terms 

of n, where n is the number of elements in the input LINK. Answer: O(n).

(ii) Assuming the two input linked lists both contain n elements, what order of growth best 

describes the runtime of calling extend? Answer: O(n2).



Summer 2012 Final  |  Q2(a)

def collide(n):

lst = []

for i in range(n):

lst.append(i)

if n <= 1:

return 1

if n <= 50:

return collide(n - 1) + collide(n - 2)

elif n > 50:

return collide(50) + collide(49)

What is the order of growth in n of the runtime of collide, where n is its input?
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def collide(n):

lst = []

for i in range(n): # O(n) block of code right here

lst.append(i)

if n <= 1:

return 1

if n <= 50:

return collide(n - 1) + collide(n - 2)

elif n > 50: # this covers the case we’re interested in (really large n)

return collide(50) + collide(49)

What is the order of growth in n of the runtime of collide, where n is its input?

Answer: O(n). For large n, it performs an O(n) list initialization and then runs collide(50) 

+ collide(49). Since 50 and 49 are constants, that part’s runtime is irrespective of n.
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def crash(n):

if n < 1:

return n

return crash(n - 1) * n

def into_me(n):

lst = []

for i in range(n):

lst.append(i)

sum = 0

for elem in lst:

sum = sum + crash(n) + crash(n)

return sum

What is the order of growth in n of the runtime 

of into_me, where n is its input?
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def crash(n): # O(n) function

if n < 1:

return n

return crash(n - 1) * n

def into_me(n):

lst = []

for i in range(n): # O(n)

lst.append(i)

sum = 0

for elem in lst: # do n times:

sum = sum + crash(n) + crash(n)

return sum

What is the order of growth in n of the runtime 

of into_me, where n is its input?

Answer: O(n2). We make 2n crash calls per into_me 

call, and the growth function of crash is O(n).
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Give worst-case asymptotic Θ(·) bounds – you guys can write them as O(·) bounds – for the 
running time of the following code snippets. As a reminder, it is meaningful to write things 

with multiple arguments like Θ(a + b), which you can think of as “Θ(N) where N = a + b.”

def a(m, n):

for i in range(m):

for j in range(n // 100):

print(“hi”)

def b(m, n):

for i in range(m // 3):

print(“hi”)

for j in range(n * 5):

print(“bye”)

def d(m, n):

for i in range(m):

j = 0

while j < i: j = j + 100

def f(m):

i = 1

while i < m:

i = i * 2

return i
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Give worst-case asymptotic Θ(·) bounds – you guys can write them as O(·) bounds – for the 
running time of the following code snippets. As a reminder, it is meaningful to write things 

with multiple arguments like Θ(a + b), which you can think of as “Θ(N) where N = a + b.”

def a(m, n): # Answer: O(mn).

for i in range(m):

for j in range(n // 100):

print(“hi”)

def b(m, n): # Answer: O(m + n).

for i in range(m // 3):

print(“hi”)

for j in range(n * 5):

print(“bye”)

def d(m, n): # Answer: O(m2).

for i in range(m): # essentially 1 + … + m work

j = 0

while j < i: j = j + 100

def f(m): # Answer: O(logm).

i = 1

while i < m:

i = i * 2

return i



Thanks, everyone!
Good luck on the final.



Recommended Reading

Unfortunately a late addition to these slides – but the 61A wiki has a pretty nice 
writeup on orders of growth.

https://www.ocf.berkeley.edu/~shidi/cs61a/wiki/Order_of_growth
https://www.ocf.berkeley.edu/~shidi/cs61a/wiki/Order_of_growth

