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This document is intended to give a high-level overview of hashing, approximately at the level I’d
imagine you need to know for the CS 170 final. As a disclaimer, I have not referred to the final in
terms of its hashing content and accordingly am not sure what you actually need to know. This is
just a guess.

As another disclaimer, this note is no substitute for watching lecture, doing homework, or reviewing
section worksheets. It’s meant as more of a refresher, something to help organize your thoughts.

Overview

Hashing

Generally, we have studied hashing in the context of search queries. Under this setup, we are
given n key-value pairs (k1, v1), ..., (kn, vn) [for distinct keys ki] and would like to construct a data
structure that we can later use to perform the operation query(ki)→ vi in constant time.

Naively, we could store all of the (ki, vi) tuples in an array, sort them by their ki components, and
later perform binary search to find the key we’re looking for. However, each query would then take
O(log n) time (because binary search). This sounds good, but it’s actually bad. For one because
queries are going to happen all the time, and for another because we can do better.

How? With hash functions. A hash function follows the form

h : U → [m]

where U is the universe (the set of possible keys) and [m] (shorthand for {1, ...,m}, or {0, ...,m−1}
depending on indexing) is one of m “slot” indices. Computing h(ki) is known as “hashing” ki.

Here is a basic hashing scheme for information storage and retrieval:

Initialization:

1. Allocate an array of size m.

2. For each i ∈ [n]: store the tuple (ki, vi) in slot h(ki) ∈ [m].

Access:

1. Hash key ki; get a slot h(ki) ∈ [m].

2. Go to the slot, get the value, and go home.
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Figure 1: basic hashing. In each slot we store a linked list of (ki, vi) tuples.

In this scheme, each access time consists of the time it takes to evaluate h(ki) plus the time it takes
to find (ki, vi) at slot h(ki). The former should be O(1). The latter depends on how many items
are at slot h(ki), which in turn depends on the collisions our hash function creates.

To assert an overall O(1) access time, we need to spread the data out as much as possible (avoid a
bunch of collisions in any given slot)! Unfortunately, the following lemma exists:

For every hash function, there exists a set of keys that are all mapped to the same slot.

Note: this is assuming that the universe is sufficiently large. But it usually will be.

For most inputs, our hash function might do pretty well. However, by this lemma there’s always
an input that will make our hashing scheme useless (no better than storing everything in a list).
And we want our search query algorithm to have guarantees for all inputs, not just random inputs.

Thus, instead of hardcoding some h and using it, we will pick h at random as part of the algorithm.
Specifically, we will pick h from a family of hash functions H. Assuming each h ∈ H performs well
for most inputs, we will then have a good probability of getting a good h for the data we receive.

Algorithm 1 No randomization

1: procedure h(k)
2: Use black magic to turn k into a number from 1 to m

3: procedure initialize((k1, v1), ..., (kn, vn))
4: Allocate an array of size m
5: For each i ∈ [n]: store the tuple (ki, vi) in slot h(ki) ∈ [m]

Algorithm 2 Randomization

1: procedure initialize((k1, v1), ..., (kn, vn))
2: h← random h ∈ H
3: Allocate an array of size m
4: For each i ∈ [n]: store the tuple (ki, vi) in slot h(ki) ∈ [m]

Without randomization, there is surely an input (i.e. a bunch of (ki, vi) pairs) that will defeat us.
With randomization, there is no such input.
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As it happens, if the probability of a collision between any two distinct keys is ≤ 1
m for a hash

function chosen uniformly randomly from H, the expected number of collisions per slot is ≤ n
m .

n: the number of (ki, vi) pairs we’re hashing
m: the number of slots we’re hashing to

This is a great result – if n = m the expected number of collisions per slot is ≤ 1 – so let’s make
sure H meets this condition. Such a hash family is called universal.

Universal Hashing

Formally, a family of hash functions H is universal if for all k1 6= k2 ∈ U ,

Pr
h∈H

[h(k1) = h(k2)] ≤
1

m

Note: a simple universal hash family is the set of all functions from U to [m]. However, to store
a generic random function from U to [m] would require |U | logm bits (because we would have to
encode all of the mappings). Furthermore, to sample one of these functions we would need to
randomize |U | logm bits. Since |U | is often massive, this is just too expensive. We should find a
smaller universal hash family to sample from.

For example, the family of key-indexed inner product functions seen in lecture.

Our hashing scheme has now become

Algorithm 3 Universal Hashing

1: h← null

2: procedure initialize((k1, v1), ..., (kn, vn))
3: h← random h from universal hash family H
4: Allocate an array of size m
5: For each i ∈ [n]: store the tuple (ki, vi) in slot h(ki) ∈ [m]

6: procedure query(ki)
7: Go to slot h(ki) and find (ki, vi)
8: Return vi

With universal hashing, in expectation we will have a constant number of collisions in each slot
– and therefore an expected constant access time overall! Best of all, this will work for all data
(hence the “universal” moniker).

Still, maybe we would like a stronger guarantee than just expectation. How about a worst-case
guarantee? This is where perfect hashing makes its entrance.

Perfect Hashing

In perfect hashing, we guarantee zero collisions and thus constant access time in the worst case.
There are multiple ways to achieve perfect hashing; I’ll cover the one we discussed in class.

During the initialization step of our current universal hashing algorithm, (ki, vi) pairs are distributed
over a hash table as depicted in Figure 2 (to give an example).
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Figure 2: basic hashing re-illustrated.

Instead of laying collisions out into a list, perfect hashing invokes another hash function which
maps each slot’s elements into a second-level array. If the first-layer hash function maps li elements
into slot i, then the second-layer hash function hi : U → [l2i ] for slot i will map these li elements
into an array of size l2i . Why l2i ? Because then the probability of collision will be low.

To be clear, we first hash each element into a table of size m. Then we re-hash the elements in each
slot into another, bigger hash table such that there are no collisions. The sizes of the second-level
hash tables do not all have to be the same.

Figure 3: perfect hashing. The length of each second-level hash table is the square of the length of
the original linked list at the slot. All hash functions are sampled from universal families.

The total size of the two-layer hash table will then be
∑m

i=1 l
2
i , since we expand each of m slots to

a size that is the square of the number of elements that are originally mapped into it. We would
like

∑m
i=1 l

2
i to be on the order O(n).
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Overall, the algorithm comes together as follows:

Algorithm 4 Perfect Hashing

1: procedure initialize((k1, v1), ..., (kn, vn))
2: h← random h from universal hash family H
3: Hash each of the ki’s; get a distribution l1, ..., lm
4: (Check that

∑m
i=1 l

2
i < 100 · n; if not, resample h and hash again)

5: for each slot j = 1, ...,m do
6: hj ← random h from universal hash family Hj

7: Use hj to hash every ki originally mapped to slot j
8: (Check that there are no collisions; if there are, resample hj and hash again)
9: Store each vi in slot hj(ki) in the second-layer table for slot j

10: procedure query(ki)
11: Return the value at hh(ki)(ki)

Note that if we do end up with collisions, we resample the hash function and try again. We continue
in this way until we have zero collisions. Therefore zero collisions is guaranteed.

The only question is “how long does it take to find hash functions that work?” But since we’re
using universal hash functions and second-layer arrays of length l2i , it shouldn’t take too long; after
all, the probability of choosing an hi with zero collisions is greater than 1

2 .

Perfect hashing uses randomness to find good (indeed perfect) hash functions for the given data.

Common Confusions

Hashing

• Why can’t we just map elements to the indices 1, 2, 3, ... in order?

– This spreads the items out, but doesn’t address the issue of search queries. Once items
are stored, how do we access them again in constant time? How do you know which
element goes with which index?

– If your answer is “use a dictionary,” that doesn’t help since dictionaries are hash maps.
You’d only end up adding a layer of indirection on top of the already-proposed solution.

• Do we sample a different hash function every time we hash something?

– We only sample the hash function once. Once we start mapping things, we need the
mappings to stay the same – otherwise we might lose track of where the items are.

• Does the hash function map all of the keys at once?

– No, a hash function only maps one element at a time. In case you are confused by the
notation h : {1, ..., p} → {1, ...,m}, it means we’re mapping a single element in the set
{1, ..., p} to a single element in the set {1, ...,m}.
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Universal Hashing

• If a hash family consists of functions that take [m] to [m−1], aren’t we mapping a larger space
to a smaller space, meaning collisions are guaranteed? How can such a family be universal?

– In general the universe will be much larger than our hash table, and our hash function
will map multiple elements in the universe to the same slot. This is fine, because
universality is defined in terms of pairwise collision probabilities between distinct keys.
The condition for universality says “what’s the probability that two different keys are
mapped to the same slot?”

– It’s totally irrelevant that the overall number of [theoretical] collisions is greater than
zero; all that matters for universality is that our pairwise probabilities hold.

– Zero collisions is a property of perfect hashing, not universal hashing.

• Is the randomness in choosing a hash function included in the 1
m probability calculation?

– Yes, intrinsically; it is where the stochasticity comes from. It’s the reason we have a
probability at all. That’s why the probability is “over a choice of hash function.”

Perfect Hashing

• Why do we use extra space for the second layer? Why not have the length of each secondary
table be the number of elements in the slot?

– Mainly because we’re using randomly sampled hash functions to map elements to the
second-layer arrays. We want the probability of collisions to be low, so we should hash
to as large as a space as we reasonably can.

– We’re using hash functions for the same reasons as the original problem. Again, note
that it doesn’t make sense to just map elements to slots 1, 2, 3, ... (see the hashing FAQ).

• Are each of the second-layer arrays the same size as the first-layer array?

– No, they are not. The array for slot i has length l2i (the square of the number of elements
that were originally mapped to slot i), so most will probably be different lengths, and
they definitely won’t all be the same length as the first layer.

• Why is the probability of choosing an hi with zero collisions greater than 1
2?

– First, note that this refers to the choice of hi from a universal hash family which maps
to a space of size l2i (where li is the number of elements we’re mapping).

– In this setting, there are
(
li
2

)
pairs of distinct elements that could collide, and for each

pair the chance they collide (given a random hash function from a universal family) is
≤ 1

l2i
. Therefore, the probability of at least one collision is

≤
(
li
2

)
· 1

l2i
=

l2i − li
2l2i

<
1

2
(by the union bound)

And the probability of zero collisions is > 1
2 .
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Appendix

Proofs

• If H is a universal hash family, then ∀ k1, ..., kn ∈ U we have

Eh∈H[# collisions in any slot] ≤ n

m

Proof. Let Iij =

{
1 if h(ki) = h(kj)

0 otherwise.

Then

Eh∈H[# collisions in any slot] = Eh∈H[I12 + I13 + ... + I1n]

=
n∑

i=2

Eh∈H[I1i]

≤
n∑

i=2

1

m

≤ n

m

• In expectation,
∑m

i=1 l
2
i is on the order O(n).

Proof.

Eh∈H

[
m∑
i=1

l2i

]
= Eh∈H[# ordered (ki, kj) tuples that collide]

=
n∑

i=1

n∑
j=1

Pr[h(ki) = h(kj)]

≤ n

(ki=kj)

+ n(n− 1) · 1

m
(ki 6=kj)

= 2n− 1

if m (the first layer size) = n.
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