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Zero-Sum Games
The professors have been busy lately...



Reductions ● Transform problem P into problem Q
● Solve problem Q
● Transform solution for Q into solution for P

If P reduces to Q, then Q is at least as difficult as P.
(It wouldn’t make sense the other way: “to solve a hard 
problem, we can just solve this easy problem.”)

If an algorithm that solves Q can be used to solve P, 
then P must reduce to Q.

Examples:
● bipartite matching → max flow
● anything in P → linear programming



Linear 
Programming

● All problems solvable in polynomial time reduce 
to Boolean circuit evaluation



Linear 
Programming

● Boolean circuit evaluation can be reduced to 
linear programming

● Therefore, all problems solvable in polynomial 
time reduce to linear programming

Linear programming is one of the two most general 
algorithmic techniques! (The other is dynamic 
programming, to which circuit evaluation also reduces.)



Maximal Matching

Have:
● an undirected graph G = (V, E)

Want to show:
● the size of every maximal matching M is at 

least half the size of a maximum matching M*

Matching: a set of edges with no common vertices

Maximal matching: a matching for which no edge 
can be added without introducing a common vertex

Maximum matching: a matching with the largest 
possible number of edges

MAXIMAL

MAXIMUM



Maximal Matching Solution

Have:
● an undirected graph G = (V, E)

Want to show:
● the size of every maximal matching M is at 

least half the size of a maximum matching M*

Matching: a set of edges with no common vertices

Maximal matching: a matching for which no edge 
can be added without introducing a common vertex

Maximum matching: a matching with the largest 
possible number of edges

At least one endpoint of every edge in M* must be involved in M. (Otherwise M would not be a maximal matching, 
because we could add the entirely uninvolved edge to it.)

Therefore the number of vertices covered by any M must be at least |M*|. Then, since each edge covers two 
vertices, the number of edges (i.e. the size) of M must be at least |M*| / 2.



Reducing Vertex Cover to Set Cover

Recall the minimum vertex cover problem.

Have:
● an undirected graph G = (V, E)

Want to find:
● the smallest set of vertices U ⊆ V that covers 

the set of edges E

Recall the minimum set cover problem.

Have:
● an set U of elements
● a collection S1, …, Sm of subsets of U

Want to find:
● the smallest collection of subsets whose 

union equals U

e.g. {A, E, C, D} is a vertex 
cover, but not a minimum 
vertex cover. {B, E, C} is a 
minimum vertex cover.

e.g. if U is {a, b, c, d}, S1 is {a, b, c}, S2 is {b, c}, and S3 is {c, d},
then {S1, S3} is a minimum set cover.

Reduce the minimum vertex cover problem 
to the minimum set cover problem.



Reducing Vertex Cover to Set Cover Solution

Goal: solve vertex cover, even though all we have is 
an algorithm to solve set cover.

We need to turn the minimum vertex cover problem 
into a minimum set cover problem.

Let U = the set of edges E.
For each v ∈ V, the set Sv should contain the set of 
edges which are adjacent to v.

Let {Sv(1), …, Sv(k)} be a set cover. Then the 
corresponding vertex cover is {v(1), …, v(k)}.

Furthermore, if {Sv(1), …, Sv(k)} is the minimum set 
cover then {v(1), …, v(k)} is the minimum vertex cover!

e.g. U = {(a b), (a e), (b c), (b e), (c d), (c f), (e f)}
Sa = {(a b), (a e)},  Sb = {(a b), (b c), (b e)},  Sc = {(b c), (c d), (c f)},  Sd = {(c d)},
Se = {(a e), (b e), (e f)},  Sf = {(e f), (c f)}

then (one) minimum set cover is {Sb, Se, Sc}.



Midterm 2 Debrief



- Questions

● Length?
● Killer problems?
● Difficulty?
● Poor wording?
● Best time of your life?


