CS 170 Section 2

Fast Fourier Transform

Owen Jow | owenjow@berkeley.edu

Agenda

® Logistics
e Fast fourier transform

Logistics

e Homework 2 due next Monday (02/05)

e Midterm 1in 13 days (< 2 weeks!)
o right now, assume that everything up to the midterm (i.e. the first five chapters) are in-scope
o from the calendar, topics include D&Q, FFT, decompositions of graphs, paths in graphs, and greedy algorithms
o for free points, be able to do anything mechanical

Background: Polynomial Multiplication

e In this class, we use the FFT in order to perform efficient polynomial multiplication.
HOW TO COMPUTE C(x) = A(x) - B(x)

Pick n points, where n 2 [the degree of C(x)] + 1.
Evaluate A(x,) at each of the n points.

Evaluate B(x,) at each of the n points.

Evaluate C(x,) = A(x,) - B(x,) for each of the n points.

ik wiNR

Convert our newfound value representation for C(x,) into a coefficient representation.

What's Slow?

® Assuming a naive approach,
HOW TO COMPUTE C(x) = A(x) - B(x)

Pick n points, where n 2 [the degree of C(x)] + 1.
Evaluate A(x,) at each of the n points. 0(n?)

Evaluate B(x,) at each of the n points. 0o(n?)

Evaluate C(x,) = A(x,) - B(x,) for each of the n points. O(n)

ik wiNR

Convert our newfound value representation for C(x,) into a coefficient representation. O(wtf)

Naively, polynomial multiplication will take at least O(n?) time!

Enter the FFT

e With the fast Fourier transform,
HOW TO COMPUTE C(x) = A(x) - B(x)

Pick n points, where n 2 [the degree of C(x)] + 1.
Evaluate A(x,) at each of the n points. O(nlogn)

Evaluate B(x,) at each of the n points. O(nlogn)

Evaluate C(x,) = A(x,) - B(x,) for each of the n points. O(n)

ik wiNR

Convert our newfound value representation for C(x,) into a coefficient representation. O(nlogn)

Using the FFT, polynomial multiplication can be performed in O(nlogn) time!

The Fourier Transform

e The Fourier transform (FT) turns a polynomial in coefficient representation into a value

representation.
o Say we have the polynomial A(x) = 1 + 2x + 3x? + 4x3. We can compute the value representation
(namely, the polynomial evaluated at the fourth roots of unity 1, i, -1, and -i) as

A(1) =1 +2(1) +3(1)% + 4(1)3 1 1 12 13 1
A(i) = 1 + 2(i) + 3(i)? + 4(i)? . 1 i i2 i3 2
A(-1) = 1 +2(-1) + 3(-1)% + 4(-1) 1 -1 (-1)* (-1)%] |3
A(-i) = 1+ 2(-i) + 3(-i)? + 4(-i) 1 —i (—9)? ()3 |4

We find that FT((1, 2, 3, 4)) = (10, -2 - 2i, -2, -2 + 2i).

The Fourier Transform

e Formally, the discrete Fourier transform is defined as the mapping
DFT :R™ = R™, (fo, s fa-1) = (1), f(w), F(@?), ..., f(

. n—1

w" 1)) where w is the n'" primitive root of unity.

(side note) Finding w, the n™ Primitive
Root of Unity

e The n' primitive root of unity will be ™" = cos(21T/n) + isin(21T/n).

/ r : }y:risin(e)
Ol

\ x=rcos(8 g

The Inverse Fourier Transform

e Theinverse of the FT transforms a polynomial in value representation into coefficient representation.

e We can use this for the final step of polynomial multiplication (interpolation).

Mechanics-wise, the inverse of the Fourier transform just runs the FT on the value representation

[e.g. (10, -2 - 2i, -2, -2 + 2i)], but substitutes w™ for w and divides the output by n.

e.g. FTY((10, -2 - 2i, -2, -2 + 2i)) can be computed as

=10+ (-2 - 2i)(1) - 2(1)2 + (-2 + 2i)(1)°] / 4 1 3 ™ 13_ 10
f, = [10 + (-2 - 20)() - 2(-)> + (-2 + 2i)(-)°) / 4 or L1 =i (=9? (-9)°| [-2-2i
L =10+ (-2 - 2i)(-1) - 2(-1)2 + (-2 + 2i)(-1)*] / 4 4|1 -1 (-1)* (-1) —8
f, = [10+ (-2 - 2i)(i) - 2(i)2 + (-2 + 20)(i)*] / 4 1 i i2 i —2 4 2i

which gives

(side note) Finding w™

e The inverse of the n™ primitive root of unity will be (€2™")* = e2™/" = cos(-2TT/n) + isin(-2T7/n).

The Fast Fourier Transform

e The fast Fourier transform is just a faster version of the Fourier transform.
| bet you never would have guessed that.
e It does the same thing as the FT.

Its approach? Divide-and-conquer!

The Fast Fourier Transform, elaborated

Observation: any polynomial A(x) is equal to Ae(x?) + xAo(x?)
o e.g A(x)=1+2x+3x%+4x3 = (1+3x%) +x(2 +4x3),
S0 Ae(x) =1+ 3x and Ao(x) = 2 + 4x

e By splitting polynomials into even and odd components, we end up with two polynomials of degree n/ 2,
which only need to be evaluated at n / 2 points (because x? will be the same for plus-minus pairs).

e Thus we have two problems of size n / 2, along with a linear combination step [multiplying Ao(x?) by x
and adding Ae(x?) and xAo(x?) together]. Our recurrence is T(n) = 2T(n / 2) + O(n), and our runtime is
O(nlogn).

The Fast Fourier Transform, elaborated

This works at every step of the recurrence because
o the n™ roots of unity are always plus-minus paired (w"™?*} = -w), and
o thesquares of the n'" roots of unity are the (n/2)" roots of unity

Evaluate: :iqe(gx?ee & i at: +xzo —wzo +z1 —T1 -+ +Tpje-1 —Tpj2-1
\\ // \\ // \\ //

Equivalently, Ae(z) and Ao (z) A V2 Vz L. 2 iy

evaluate: degree < n/2 —1 : o 1 Tn/2-1

FFT Pseudocode

Figure 2.7 The fast Fourier transform (polynomial formulation)
function FFT(A,w)
Input: Coefficient representation of a polynomial A(z)
of degree <n—1, where n is a power of 2
w, an nth root of unity
Output: Value representation A(w?),...,A(w"™?)

if w=1: return A(1l)
express A(z) in the form A.(z?) + zA,(z?)
call FFT (Ae,w2) to evaluate A, at even powers of w
call FFT (A, w?) to evaluate A, at even powers of w
for j=0 to n—1;

compute A(w!) = A(w¥) + wi Ay(w¥)

return A(W°),...,A(w™ 1)

