
CS 170 Section 2
Fast Fourier Transform

Owen Jow | owenjow@berkeley.edu

Agenda

● Logistics

● Fast fourier transform

Logistics

Logistics

● Homework 2 due next Monday (02/05)

● Midterm 1 in 13 days (< 2 weeks!)
○ right now, assume that everything up to the midterm (i.e. the first five chapters) are in-scope

○ from the calendar, topics include D&Q, FFT, decompositions of graphs, paths in graphs, and greedy algorithms

○ for free points, be able to do anything mechanical

Fast Fourier Transform

Background: Polynomial Multiplication

● In this class, we use the FFT in order to perform efficient polynomial multiplication.

HOW TO COMPUTE C(x) = A(x) · B(x)

1. Pick n points, where n ≥ [the degree of C(x)] + 1.

2. Evaluate A(x
k
) at each of the n points.

3. Evaluate B(x
k
) at each of the n points.

4. Evaluate C(x
k
) = A(x

k
) · B(x

k
) for each of the n points.

5. Convert our newfound value representation for C(x
k
) into a coefficient representation.

What’s Slow?

● Assuming a naive approach,

HOW TO COMPUTE C(x) = A(x) · B(x)

1. Pick n points, where n ≥ [the degree of C(x)] + 1.

2. Evaluate A(x
k
) at each of the n points. O(n2)

3. Evaluate B(x
k
) at each of the n points. O(n2)

4. Evaluate C(x
k
) = A(x

k
) · B(x

k
) for each of the n points. O(n)

5. Convert our newfound value representation for C(x
k
) into a coefficient representation. O(wtf)

Naively, polynomial multiplication will take at least O(n2) time!

Enter the FFT

● With the fast Fourier transform,

HOW TO COMPUTE C(x) = A(x) · B(x)

1. Pick n points, where n ≥ [the degree of C(x)] + 1.

2. Evaluate A(x
k
) at each of the n points. O(nlogn)

3. Evaluate B(x
k
) at each of the n points. O(nlogn)

4. Evaluate C(x
k
) = A(x

k
) · B(x

k
) for each of the n points. O(n)

5. Convert our newfound value representation for C(x
k
) into a coefficient representation. O(nlogn)

Using the FFT, polynomial multiplication can be performed in O(nlogn) time!

The Fourier Transform

● The Fourier transform (FT) turns a polynomial in coefficient representation into a value

representation.
○ Say we have the polynomial A(x) = 1 + 2x + 3x2 + 4x3. We can compute the value representation

(namely, the polynomial evaluated at the fourth roots of unity 1, i, -1, and -i) as

A(1) = 1 + 2(1) + 3(1)2 + 4(1)3

A(i) = 1 + 2(i) + 3(i)2 + 4(i)3

A(-1) = 1 + 2(-1) + 3(-1)2 + 4(-1)3

A(-i) = 1 + 2(-i) + 3(-i)2 + 4(-i)3

We find that FT((1, 2, 3, 4)) = (10, -2 - 2i, -2, -2 + 2i).

or

The Fourier Transform

● Formally, the discrete Fourier transform is defined as the mapping

 where ω is the nth primitive root of unity.

(side note) Finding ω, the nth Primitive
Root of Unity
● The nth primitive root of unity will be e2πi/n = cos(2π/n) + isin(2π/n).

The Inverse Fourier Transform

● The inverse of the FT transforms a polynomial in value representation into coefficient representation.

● We can use this for the final step of polynomial multiplication (interpolation).

Mechanics-wise, the inverse of the Fourier transform just runs the FT on the value representation

[e.g. (10, -2 - 2i, -2, -2 + 2i)], but substitutes ω-1 for ω and divides the output by n.

e.g. FT-1((10, -2 - 2i, -2, -2 + 2i)) can be computed as

f
0
 = [10 + (-2 - 2i)(1) - 2(1)2 + (-2 + 2i)(1)3] / 4

f
1
 = [10 + (-2 - 2i)(-i) - 2(-i)2 + (-2 + 2i)(-i)3] / 4

f
2
 = [10 + (-2 - 2i)(-1) - 2(-1)2 + (-2 + 2i)(-1)3] / 4

f
3
 = [10 + (-2 - 2i)(i) - 2(i)2 + (-2 + 2i)(i)3] / 4

or which gives
(1, 2, 3, 4).

(side note) Finding ω-1

● The inverse of the nth primitive root of unity will be (e2πi/n)-1 = e-2πi/n = cos(-2π/n) + isin(-2π/n).

The Fast Fourier Transform

● The fast Fourier transform is just a faster version of the Fourier transform.

I bet you never would have guessed that.

● It does the same thing as the FT.

Its approach? Divide-and-conquer!

The Fast Fourier Transform, elaborated

● Observation: any polynomial A(x) is equal to Ae(x2) + xAo(x2)
○ e.g. A(x) = 1 + 2x + 3x2 + 4x3 = (1 + 3x2) + x(2 + 4x2),

so Ae(x) = 1 + 3x and Ao(x) = 2 + 4x

● By splitting polynomials into even and odd components, we end up with two polynomials of degree n / 2,

which only need to be evaluated at n / 2 points (because x2 will be the same for plus-minus pairs).

● Thus we have two problems of size n / 2, along with a linear combination step [multiplying Ao(x2) by x

and adding Ae(x2) and xAo(x2) together]. Our recurrence is T(n) = 2T(n / 2) + O(n), and our runtime is

O(nlogn).

The Fast Fourier Transform, elaborated

● This works at every step of the recurrence because
○ the nth roots of unity are always plus-minus paired (ωn/2 + j = -ωj), and

○ the squares of the nth roots of unity are the (n/2)nd roots of unity

FFT Pseudocode

