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Multiplicative Updates Intro



The Experts Problem

• Every day,

you enter a transaction in which you lose between 0 and 1 dollars

• Life is hard

• There are n experts, each of whom gives different advice

• Instead of making your own decisions, you choose an expert every

day and follow his advice

• The next day you find out how all the experts performed, and you

can choose another expert if you wish

• Goal: minimize regret
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Terminology

• There are n experts

• There are T days (T is very large)

• The ith expert on day t costs you c ti ∈ [0, 1]

• You choose expert i(t) on day t

• R is your regret
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Regret

Figure 1: we would like to minimize our regret R.

R =
1

T

(
T∑
t=1

c ti(t) −min
i

T∑
t=1

c ti

)
i.e. on average ((how you did)− (how the best expert did))
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Goal Reframed

• More specifically, you would like an algorithm for choosing experts

with the result that R ≈ 0 no matter what c ti s the environment

throws at you (i.e. even in the worst case)

• For this you can use multiplicative weight updates
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Notes

• You want your algorithm to do as well as the one that picks the best

expert from the start and sticks with him

• Regret is defined at the end (how did you do in comparison to how

you’d have done if you chose the best expert at the start and

followed him every day?)

• It is impossible to match the best expert on a day-to-day basis, but

it is possible to match the single best expert throughout

• The adversary is the environment, which provides the cost values
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Multiplicative Weight Updates

MWU is a randomized algorithm.

It chooses expert i on day t with weight w t
i > 0.

Algorithm 1 Multiplicative Weight Updates

1: Initialize all weights to w0
i = 1.

2: for i = 1 to T do

3: Choose expert i with probability wi∑
j wj

4: Update weights for all experts: w t+1
i = w t

i · (1− ε)c ti
5: end for
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Multiplicative Weight Updates

• (1− ε)c ti will be less than or equal to 1. It’ll be much less than 1 if

the expert ruined you; the bigger c ti is, the more you punish expert i .

• In the words of a certain theoretical computer scientist,

“cTi is the amount of money this bastard made you pay.”

• Weights “absorb” all past performances of experts

• Experts who perform the best end up with the highest weights
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Multiplicative Weight Updates

• This algorithm can be proven to give almost zero regret.

• The proof is left as an exercise.

• Just kidding. For the proof, see the notes.

R =
1

T
(MWU− OPT) ≤ ln n

εT
+ ε

OPT

T

≤ ln n

εT
+ ε

≤ 2

√
ln n

T

9

https://inst.eecs.berkeley.edu/~cs170/fa16/MWUCS170.pdf


Notes

• With this algorithm, higher T means smaller regret.

• MWU punishes bad experts exponentially severely. By the crushing

weight of exponentiation, if an expert is the best you’ll be choosing

him all the time.
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Life Advice

If you want zero regret in life,

notice what works in a very

conservative fashion – by giving

it a little more weight every

time. In the long run, this

means perfection.

A theoretical computer scientist
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Follow the Regularized Leader



Exercise 1a

• You are playing T rounds of a game

• At round t you pick strategy i ∈ {1, ..., n} and receive payoff

A(t, i) ∈ [0, 1]

• What happens if you choose at each round the strategy which has

given the highest average payoff so far? (Even though you throw in

your lot with one strategy, you get to observe how all of them do.)
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Exercise 1b

• The problem: if you choose strategies deterministically, an

adversarial environment can design payoffs to ruin you

• So let’s try a randomized strategy

• To the adversary: good luck outplaying randomness

• Pick each strategy at random from a distribution Dt
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Exercise 1b

• Dt assigns a probability pt(i) to each strategy i

• At round t, “follow the leader” will approximately maximize

n∑
i=1

pt(i) ·
∑

τ∈{1,...,t−1}

A(τ, i)


• Why is this no better than before?
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Exercise 1c

• Let’s add an entropy regularizer, now maximizing at time step t

n∑
i=1

pt(i) ·
∑

τ∈{1,...,t−1}

A(τ, i)

− ηpt(i) ln pt(i)


• Suddenly, “follow the regularized leader” is the same as MWU.

• Show that for any distribution pt , our objective is at most

η ln

(
n∑

i=1

e
∑
τ∈{1,...,t−1}

A(τ,i)
η

)
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Exercise 1d

When computing pt using multiplicative weight updates, we can say for

some choice of ε (dependent on η) that the objective

n∑
i=1

pt(i) ·
∑

τ∈{1,...,t−1}

A(τ, i)

− ηpt(i) ln pt(i)


is equal to

η ln

(
n∑

i=1

e
∑
τ∈{1,...,t−1}

A(τ,i)
η

)
Show this. Also, how does ε depend on η?
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