CS 170 Section 10

Search Problems and Intractability

Owen Jow

owenjow@berkeley.edu

4/04 Algorithm Not Found

Search Problem

- Find a solution *S* to the problem instance *I*.
- A solution can be verified in polynomial time by the algorithm C(I, S).

Examples SAT: find a satisfying truth assignment for a Boolean formula. **TSP:** find a tour ¹ of total distance b or less.

¹a cycle that passes through every vertex exactly once

Optimization Problem

- Find the **best** solution *S* to the problem instance *I*.
- "Best" should be quantified by some objective function.

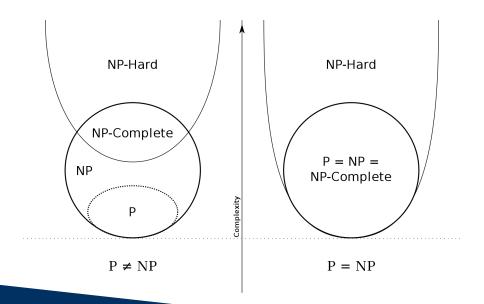
Examples

MAX-SAT: find the max number of clauses that can be simultaneously true. **TSP-OPT:** find a tour of minimum distance.

Search vs Optimization

- Search and optimization formulations are of equal difficulty.
- Why? Each reduces to the other.

 $\mathsf{TSP} \longleftrightarrow \mathsf{TSP}\operatorname{-OPT}$


P vs NP

- P: all search problems that can be solved in polynomial time
- NP: all search problems (i.e. "verifiable in polynomial time")
- NP-complete: the problems to which all search problems reduce
- NP-hard: "at least as hard as the NP-complete problems"

I know an NP-complete joke, but once you've heard one you've heard them all.

jason, Stack Overflow

Examples

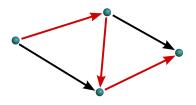

NP-complete	Р
3SAT	HORN SAT
TSP	MST
ILP	LP
RUDRATA PATH	EULER PATH
BALANCED CUT	MINIMUM CUT
LONGEST PATH	SHORTEST PATH

Table 1: "Hard" versus "easy" search problems.

A Faulty Reduction

- Rudrata path: find a path that goes through each vertex exactly once.
 - This is also known as the Hamiltonian path problem.
- **Longest path:** find a simple path of length $\geq g$ [search formulation].
 - Simple: cannot pass through any vertex more than once.

A Faulty Reduction

Undirected RUDRATA PATH can be reduced to LONGEST PATH in a DAG.

Given a graph G = (V, E), we can create a DAG as a directed DFS tree. If the longest path in this DAG has |V| - 1 edges, then there is a Rudrata path in *G* (since a simple path with |V| - 1 edges visits every vertex).

• What is wrong with the given justification for our reduction?

A Faulty Reduction Solution

Undirected RUDRATA PATH can be reduced to LONGEST PATH in a DAG.

Given a graph G = (V, E), we can create a DAG as a directed DFS tree. If the longest path in this DAG has |V| - 1 edges, then there is a Rudrata path in *G* (since a simple path with |V| - 1 edges visits every vertex).

• What is wrong with the given justification for our reduction?

To fully justify a reduction, we need to prove that an original problem instance *l* has a solution **iff** reduced problem instance *l'* has a solution.

- It is possible to produce a DAG without a length |V| - 1 path in cases where *G does* have a Rudrata path.

