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An Empirical Look into the Input-Space
Geometry of Deep Image Classifiers

Owen Jow

• A study in three parts
1. Topology of classification regions

a. Insight: deep classifiers learn big, connected classification regions
2. Curvature of decision boundaries

a. Insight: decision boundary flat in most directions near natural images
b. Insight: vulnerable to perturbation in the directions of high curvature

3. Applying insights to adversarial example detection
a. Can detect adversarial examples with small additive perturbations
b. Can recover the classification labels of the images pre-perturbation
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Setting the Scene

• L-class image classification network 

Image source: MathWorks(Authors run experiments using LeNet, NiN, GoogLeNet, 
CaffeNet, VGG-19, and ResNet-152 architectures)
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https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
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Setting the Scene

• Send image through classifier, get
• Then is the estimated label
• There are L classification regions in

Image source: The Shape of Data
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https://shapeofdata.wordpress.com/2013/06/04/multi-class-classification/
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Topology of Classification Regions

• Question: are   ’s classification regions connected?

Characterizing	topology	of	classification	regions
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Topology of Classification Regions

• Question: are   ’s classification regions connected?
• Let’s write an algorithm to find out.

Characterizing	topology	of	classification	regions

Idea:
If we can take any two points in any one classification 
region !i and connect them with a path that doesn’t 
leave !i, then all !is	must be connected.
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Topology of Classification Regions

• Question: are   ’s classification regions connected?
• Let’s write an algorithm to find out.

Characterizing	topology	of	classification	regions

Idea:
If we can take any two points in any one classification 
region !i and connect them with a path that doesn’t 
leave !i, then all !is	must be connected.

Validate empirically!
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Path Finding

• Given two data points (same estimated label    ), 
construct a piecewise-linear connecting path within

1. Try to go directly from x1 to x2.
2. If straight path stays within classification region,

3. Otherwise,
a. project midpoint to classification region.
b. repeat recursively on both resulting segments.

a. done.

Characterizing	topology	of	classification	regions
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Path Finding

Notes
• Algorithm doesn’t seem

to take no for an answer
• Check validity by sampling 

“lines” between anchor points
• “Is this image in the right region?”
• Distance between sampled data 

points is set to

Characterizing	topology	of	classification	regions
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Path Finding

• Three investigations using CaffeNet classifier (though others 
apparently yield similar results) and ImageNet validation data

• The question is always
• “Is there a path between two points with the same estimated label?”
where the two identically-labeled points are
1. (a) random from data, (b) random from data
2. (a) random from data, (b) adversarially perturbed from a different class
3. (a) random from data, (b) adversarially perturbed from random noise

Characterizing	topology	of	classification	regions
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Path Finding

• Note: analysis doesn’t depend on visual characteristics
• In scenarios 2 and 3, one of the images won’t look like true label

• Might find a path between these images, all classified as puma:

Characterizing	topology	of	classification	regions
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Path Finding

• For each scenario, attempt to find paths for 1000 pairs of points

Characterizing	topology	of	classification	regions

Findings:
1. A connecting path within the region always exists.
2. This connecting path is approximately straight.

Obviously these are empirical conclusions.
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A connecting path within
the region always exists.

(on average 10 anchor points needed)

• Conclusion: input-space classification regions induced by
deep networks are connected.

Characterizing	topology	of	classification	regions

A convex path which crosses classification 
regions. Visualization is the cross-section of        
spanned by             (v. axis) and                  (h. axis).

A nonconvex path that sticks to a classification 
region. Visualization consists of 2D subspaces 
spanned by            (v. ax.) and                    (h. ax.).

[Scenario 1
Path Finding Example]

[           is smallest perturbation necessary to misclassify      ]
i.e. vector from      to decision boundary, orthogonal to boundary
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Straight, you say?

• Calculate path length relative to straight path length

• Across all three scenarios, average length relative to
straight path is 1 + 10-4, meaning paths are close to straight

• Suggests that classification regions are set up s.t. arbitrary 
points within them can be connected with almost-straight paths

Characterizing	topology	of	classification	regions

à decision boundaries not too complex?
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Convex classification regions?

• Are classification regions convex sets?
• Experiment: take k images from same estimated class, check 

whether random convex combination is labeled in that class too

Characterizing	topology	of	classification	regions
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Convex classification regions

• Classification regions are not convex sets
• Probably only near-convex in the regions between pairs

of data points which are close to the real space of images

Characterizing	topology	of	classification	regions

Note that this is a hypothetical 2D illustration.
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Decision Boundaries

• How complex are the functions that our networks are learning? 
• What do their decision boundaries look like?

Image source: Aayush Agrawal
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https://discuss.analyticsvidhya.com/t/visualization-of-decision-boundaries/12857
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Decision Boundaries

• Pairwise decision boundary between classes i and j

• Hypersurface in 
• At any point    on the decision boundary, the gradient of

is orthogonal to the tangent space

normal section of 
decision boundary

i.e.              is a normal vector to the tangent spacerF (z)

gradient is the direction in input 
space of most rapid F(z) increase
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Review of Normal Curvature

• Question: what is the curvature of the
decision boundary near natural images?

Characterizing	decision	boundary	curvature

Normal curvature at point z along tangent direction v

how quickly the normal is
changing along tangent direction v
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Aside: What’s That Formula?

• We’ve learned that normal curvature is defined

• How does the paper’s formulation equate?

Characterizing	decision	boundary	curvature

N (X) =
hdf(X), dN(X)i
hdf(X), df(X)i

where n is the normal vector
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Review of Normal Curvature

• d - 1 principal directions with associated principal curvatures

Characterizing	decision	boundary	curvature

principal curvatures are the eigenvalues of the shape operator

for
projection operator on tangent space

Image source: Keenan Crane

nnT projects onto n,
v - nnTv orthogonal to n
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Review of Normal Curvature

• d - 1 principal directions with associated principal curvatures

Characterizing	decision	boundary	curvature

each principal direction is the tangent direction which maximizes curvature 
subject to the constraint of being orthogonal to all previous principal directions

Image source: Keenan Crane
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Curvature of the Decision Boundaries

• Choose 1000 natural images from CIFAR-10 validation set
• For CIFAR-10, d = 32 * 32 * 3 = 3072

• Compute nearest image on decision boundary z
• Recall:                         , where          is the shortest vector from    

to the decision boundary (the “adversarial perturbation”)
• Compute principal curvatures at z

Characterizing	decision	boundary	curvature

average for each principal curvature
over all 1000 randomly sampled images
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Curvature of the Decision Boundaries

Characterizing	decision	boundary	curvature

Observations
In the vicinity of real images:
• Most principal curvatures are ~0  (decision 

boundary is essentially flat in most tangent directions)
• But some directions of high 

positive/negative curvature
• Positive curvature à convex
• Negative curvature à concave

• Asymmetric toward negative curvature
• The negative curvatures are of slightly

greater magnitude than positive curvatures
• Average curvature near real images is negative

• Important later!
• Consistent across different data, networks, etc.
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Curvature of the Decision Boundaries

• Question: are directions of high curvature shared across 
different data points (images)?

• To determine:
1. Compute largest principal directions for 100 random training samples

a. Put directions into a matrix M
2. Most common curved directions   ß m largest singular vectors of M
3. Check curvature in these directions for boundary near unseen samples

Characterizing	decision	boundary	curvature

how curved is decision boundary in 
direction ui, relative to random directions

note similarity to previous form; 
numerator is just 
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Curvature of the Decision Boundaries

• Results: average for 1000 different images

Characterizing	decision	boundary	curvature

highly curved along the first
directions, independent of the data!

directions 
of universal 
curvature
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Curvature of the Decision Boundaries

• Empirically, classifier much less robust to perturbations in 
directions where the decision boundary is highly curved

Characterizing	decision	boundary	curvature

Construct subspace S of first 
200 shared directions of high 
curvature. Try perturbing in 
directions from S or from S⟂.
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Curvature of the Decision Boundaries

• Adversarial perturbations have much larger components in
the directions of high curvature than random perturbations do

Characterizing	decision	boundary	curvature

Curvature plays a big role in 
characterizing network sensitivities.
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Adversarial Examples

Image source: Goodfellow et al.
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http://arxiv.org/abs/1412.6572
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Detecting Adversarial Examples

• Average curvature of boundary near natural images is negative
• Average curvature of boundary near adversarial images is positive

• Look at average curvature of boundary near data point
to decide whether original or adversarially-perturbed

Applying	geometric	insights	to	defend	against	adversarial	examples

normal section in vicinity of 
natural image/perturbed image
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Detecting Adversarial Examples

Applying	geometric	insights	to	defend	against	adversarial	examples

Recover correct label as 
class corresponding to the 
decision boundary with 
highest positive curvature

Use threshold t (instead of 
0) to control the tradeoff 
between true/false positives

Estimate avg. curvature 
over decision boundaries 
between predicted class 
and all of the other classes
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from perspective of perturbed point
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Results: True vs False Positives

Applying	geometric	insights	to	defend	against	adversarial	examples

Same thing, but perturbations now 
multiplied by some constant factor

Correctly recovers labels with accuracy of 92%, 88%, and 74% 
for GoogLeNet, CaffeNet, and VGG-19 respectively (with t = 0).
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Detection accuracy on original images 
versus failure rate on perturbed images
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Results: True vs False Positives

Applying	geometric	insights	to	defend	against	adversarial	examples

Detection accuracy on original images 
versus failure rate on perturbed images

Same thing, but perturbations now 
multiplied by some constant factor

Does not require any extra training!
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Results: True vs False Positives

Applying	geometric	insights	to	defend	against	adversarial	examples

Same thing, but perturbations now 
multiplied by some constant factor

Good at detecting small perturbations, bad at detecting
large perturbations (opposite is true for traditional methods).
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Detection accuracy on original images 
versus failure rate on perturbed images
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Takeaways

• A study in three parts
1. Topology of classification regions

a. Insight: deep classifiers learn big, connected classification regions
2. Curvature of decision boundaries

a. Insight: decision boundary flat in most directions near natural images
b. Insight: vulnerable to perturbation in the directions of high curvature

3. Applying insights to adversarial example detection
a. Can detect adversarial examples with small additive perturbations
b. Can recover the classification labels of the images pre-perturbation
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