Jiang, Schroeder, Seue, Teran, Stomalkhin
The Affine Particle-In-Cell Method

1 Introduction

In the past, simulation for deformable materials (such as fluids) has been performed through the use of
either Lagrangian (particle-based) or Eulerian (grid-based) methods. Particles tend to be better for resolving
transport (advection in the case of fluids) and topological change, while grids tend to be better for computing
collision reactions and updates due to forces like pressure and viscosity.

In order to acquire the advantages of both representations, many state-of-the-art methods utilize hybrid
Lagrangian/Eulerian simulation, where the material is transformed back and forth between a particle rep-
resentation and a grid representation such that kinematic steps can be done on particles and dynamic steps
can be done on the grid.

Particle-In-Cell (PIC) and Fluid Implicit Particle (FLIP) are two hybrid methods which each have their own
advantages and shortcomings. It’s a bit of a Goldilocks problem, actually: PIC is stable but too dissipative,
while FLIP is non-dissipative but noisy and sometimes unstable. Broadly, these errors are caused by transfer
between the particle and grid representations.

PIC PIC directly interpolates particles from the grid, which leads to a loss of information and thereby
dissipation. This dissipation also causes a loss of angular momentum; visually, this means an rotating object
in free fall might (disturbingly, if you can imagine it!) just stop rotating.

FLIP FLIP, instead of directly interpolating particles from the grid, transfers increments of velocities and
displacements [w.r.t. the original particle values]. However, augmenting the original values in this fashion is
unsafe and can result in instability.

Note: since there are usually more particles than grid nodes, some particles are not seen by the grid and thus
get no physical response. This phenomenon is called ringing instability and causes positional artifacts
such as noise and clumping. This is more of a problem in FLIP than PIC.

PIC/FLIP We can blend PIC and FLIP in order to achieve a simulation that is both stable and energetic.
In the blend, a bias toward PIC avoids instability at the expense of dissipation, while a bias toward FLIP
avoids dissipation at the expense of noise and [potential] instability.

However, it can be difficult to strike a balance between the two. Therefore, in this paper we explore a
third option for particle/grid transfer, APIC, which fixes PIC’s information loss by describing each particle’s
velocity in a locally affine (not locally constant) manner. This stably removes PIC’s dissipation and also
allows for conservation of angular momentum across particle/grid transfers. Essentially, APIC is both more
energetic than the original PIC and more stable than PIC/FLIP. It ends up being very useful in MPM
simulations.

2 Particle-Grid Transfer

The difference between the methods has to do with the details of transfer between particles and grid. In
PIC, all data flows through the grid. In FLIP, there is an additional data path from the original particle
state, which reduces dissipation but can lead to instability.

—_



When it comes to PIC, a single particle often receives data from multiple grid points, but is forced to reduce
those influences to a single constant value. This leads to information loss and thereby dissipation. To remedy
this, we allow particles to track a full affine representation of the local grid data.

This scheme (APIC) allows us to control noise, because the pure filter property of PIC is retained (i.e. all
information is forced through the grid). And, as just mentioned, it minimizes information loss by enriching
each particle with a 3 x 3 matrix giving a locally affine description of the flow.

APIC

A quick word on notation: a subscript p denotes a particle, a subscript of ¢ denotes a grid index, a superscript
of n means that the quantity is available at the beginning of the time step, and a superscript of n + 1 means
that the quantity is available at the beginning of the next time step. Lowercase unbolded quantities are
scalars. Lowercase bolded quantities are vectors. Uppercase bolded quantities are matrices.

One more time: we want to prevent the loss of information that’s causing all the damping. Therefore we
enrich our velocity representation as being locally affine on each particle.

For this we introduce a matrix Cj; for each particle which contains the particle’s velocity derivatives. Then

the local velocity represented by a particle at the grid position x; is

v, + Cp(xi — x3)

where v and x;; are, respectively, the velocity and position of particle p.

To transfer from particles to grid:

where (in order of appearance) m]' is the mass at cell 4, v' is the velocity at cell i, wy, is a weight for cell
i and particle p, m,, is the mass of particle p, and v} is the velocity of particle p. By is the affine state of
particle p. Dy is analogous to an inertia tensor, and is defined as

Dy = szv(xl - XZ)(Xi — XZ)T
i

which can derived through the preservation of affine motion. Note that C} = BZ(DZ)*I.

To transfer from grid to particles:

n+l _ ngon+l/ . n\T
B, = E wi, VI (% — X))
i

+

where v 1 is the intermediate velocity at cell i.

This scheme preserves both affine velocity fields and angular momentum during each transfer. Hence our
rotations will be resolved correctly.

Some limitations: APIC doesn’t actually do anything about ringing instability. Also, we have to store an
extra matrix per particle and perform a few extra operations during the transfers. However, the difference
in cost is negligible in practice.

References

[1] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The Affine Particle-In-Cell Method.
ACM Trans. Graph. 34, 4, Article 51 (July 2015), 10 pages.



	Introduction
	Particle-Grid Transfer

