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1 Lecture

There are many forms of inference:

• Filtering: Y0, Y1, ..., YT → Filter → X̂T

– e.g. tracking in real-time

• Predicting: Y0, Y1, ..., YT → Predict → ŶT+1

– Given data from 0 to T , we want to predict what’s going to happen tomorrow.

– e.g. radar tracking, stock prices

• Smoothing: Y0, Y1, ..., YT → Smooth → X̂t (t ≤ T )

– This is about being able to estimate in non-real time.

– We get all this data and we chew on it, and maybe at time T we want a better estimate of what happened
at time 1. We don’t mind waiting; we just really want to know what was happening at time 1.

– Non-causal applications: record data and then want to know “where was the murderer?”

– e.g. inferring things in the past (non-causal filtering), like the cause of a car crash

– The main difference between smoothing and filtering is real-time versus non real-time.

• Max Likelihood State Estimation (MLSE): Y0, Y1, ..., YT → MLSE → {X̂0, X̂1, ..., X̂T }

– Here, we’d like to find the sequence of states that best explains what we observed.

– e.g. convolutional coding (Viterbi algorithm), auto-spell

HMMs

An HMM is a random sequence {xn, yn} where xn ∈ X = {1, 2, ..., N} and yn ∈ Y = {1, 2, ...,M}, for which

P (X0 = x0, ..., Xn = xn, Y0 = y0, ..., Yn = yn) = π0(x0) ·Q(x0, y0) · P (x0, x1) ·Q(x1, y1) · · ·P (xn−1, xn) ·Q(xn, yn)

where

π0 is the initial state distribution

Q is the [observation] emission probability

P is the transition probability

A diagram of the HMM setup can be seen on the next page.

We have hidden states xi and observable states (emissions) yi. The goal is to make a maximum likelihood sequence
estimate of the hidden states xi given the observations yi.

Example: n = 2.
P (x0, y0, x1, y1) = P (x0)P (y0 | x0)P (x1 | x0)P (y1 | x1)

1



source: notes from Kannan Ramchandran’s EE 126 lecture

Example: “nearly honest” casino. A casino uses a fair die most of the time, but switches to a loaded die as needed.

Problem: given the observations (a sequence of die rolls), find the most likely sequence of hidden states (die labels).
In other words, find MAP[Xn | Y n = yn].

xn
∗

= arg max
xn∈Xn

P (Xn = xn | Y n = yn)

= arg max
xn∈Xn

π0(x0)Q(x0, y0)P (x0, x1) · · ·P (xn−1, xn)Q(xn, yn)

= arg max
xn∈Xn

log [π0(x0)Q(x0, y0)]︸ ︷︷ ︸
define as −d0(x0)

+

n∑
m=1

log [P (xm−1, xm)Q(xm, ym)]︸ ︷︷ ︸
define as −dm(xm−1,xm)

= arg min
xn∈Xn

d0(x0) +

n∑
m=1

dm(xm−1, xm)
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The numbers are the observations. Now, using probabilities as distances, we just need to find the shortest path from
the start to the end state. Use Bellman-Ford. That’s all there is to it.

2


	Lecture

