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1 Lecture

Kalman Filter

Theorem.

L[X | Y, Z] = L[X | Y ] + L[X | Z]

if Y & Z are uncorrelated (i.e. cov(Y,Z) = 0, Y ⊥ Z, E[Y Z] = 0). Then the error is orthogonal to both Y and Z.

Theorem. If Y and Z are not orthogonal, we should use Gram-Schmidt to make them so.

L[X | Y,Z] = L[X | Y,Z⊥]

= L[X | Y ] + L[X | Z⊥]

where Z⊥ = Z − Z‖ = Z − L[Z | Y ] = the “innovative” component of Z.

Why wouldn’t the vectors be orthogonal? Perhaps we observe Y , then Z.

In words, we orthogonalize the basis {Y, Z} before projecting. The equivalence is clear because span{Y, Z} =
span{Y,Z⊥}, i.e. {Y,Z⊥} is a basis for the same space L(Y, Z).

As setup for the Kalman filter, we have a sequence of noisy observations Yi’s Y1, ..., Yn and want to do linear
estimation of the causes X1, ..., Xn. We will denote {Y1, ..., Yn} as Y n. The Kalman filter will perform iterative
linear estimation of L[Xn | Y n] in an online fashion (i.e. we can’t wait for all of the Y ’s before spitting out X’s).

Note: the Kalman filter “filters” out noise from the Yi’s to produce Xi’s.

Our iterative estimates of L[Xn | Y n] adhere to the following structure:

1) L[X1 | Y 1]

2) L[X2 | Y 2] = L[X2 | Y1] + L[X2 | Y ⊥2 ]

• Y ⊥2 = Y2 − L[Y2 | Y1]

3) L[X3 | Y 2, Y3] = L[X3 | Y 2] + L[X3 | Y ⊥3 ] = L[X3 | Y1] + L[X3 | Y ⊥2 ] + L[X3 | Y ⊥3 ]

• Y ⊥3 = Y3 − L[Y3 | Y 2]

...

n) L[Xn | Y n] = L[Xn | Y (n−1)] + L[Xn | Y ⊥n ]

In words, we first estimate L[X1 | Y1]. Then we estimate L[X2 | Y1, Y2] = L[X2 | Y1] + L[X2 | Y ⊥2 ]. And so on...

State-Space Equations

Here we will study the scalar versions of the state-space equations. For the vector version, read the book.
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Xn = aXn−1 + Vn

Yn = cXn +Wn

where a is the linear estimation coefficient and Vn,Wn are i.i.d. zero mean noise.

The goal is to estimate Xn given Yn. We will refer to L[Xn | Y m] as X̂n|m, i.e. the estimate of Xn at time m. Then

L[Xn | Y n−1] = X̂n|n−1. Furthermore, we define

σ2
n|m := E[(Xn − X̂n|m)2] (error variance)

∆n|m := Xn − X̂n|m (error)

Note that if the noise is Gaussian, then the LLSE L[Xn | Y n] (Kalman filter) is equal to the MMSE and is optimal.

Kalman Equations (Scalar Case)

(1) X̂n|n︸ ︷︷ ︸
target of estimation

= X̂n|n−1︸ ︷︷ ︸
precomputed (known) estimate

+Kn (Yn − cX̂n|n−1)︸ ︷︷ ︸
Ỹn: innovation in Yn

We estimate Xn based on what we’ve already seen (before n), and then we update the preliminary estimate
after observing n. So the first component is the “predict” part and the second component is the “update” part.
(Also, Ỹn ⊥ Y (n−1).)

(2) Kn =
cσ2

n|n−1

c2σ2
n|n−1

+σ2
W

(Kalman gain)

σ2
W is the variance of Wn.

(3) σ2
n|n−1 = a2σ2

n−1|n−1 + σ2
V

(4) σ2
n|n = σ2

n|n−1(1−Knc)

(2), (3), and (4) can be precomputed because they only depend on constants and known values.

On round n, we input X̂n−1|n−1, σ2
n−1|n−1, and Yn and output X̂n|n and σ2

n|n.

Explanation / Derivation

WLOG, assume c = 1 (otherwise we can scale Yn = cXn +Wn).

(1)
X̂n|n = L[Xn | Y n] = L[Xn | Y n−1] + L[Xn | Ỹn]

where Ỹn = Yn − L[Yn | Y n−1].

Observe:

L[Yn | Y n−1] = L[cXn +Wn | Y n−1]

= cL[Xn | Y n−1] + L[Wn | Y n−1]

= cX̂n|n−1 + 0 (Wn is independent of everything else)

And then

X̂n|n−1 = L[Xn | Y n−1]

= L[aXn−1 + Vn | Y n−1]

= aL[Xn−1 | Y n−1] + L[Vn | Y n−1]

= aL[Xn−1 | Y n−1]

= aX̂n−1|n−1 → L[Yn | Y n−1] = caX̂n−1|n−1
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(2) Note that Kn is the Kalman gain (it’s just a gain).

KnỸn = L[Xn | Ỹn]

= ProjỸn
Xn ( = “bỸn”)

=
E[XnỸn]

E[Ỹ 2
n ]

= ...

=
σn|n−1

σ2
n|n−1 + σ2

W

Geometry

The Kalman gain can be found in BE = ‖KnỸn‖ = Kn ·BF . By similar triangles,

BE

BG
=
BG

BF
=⇒ BE =

BG2

BF

BE = Kn ·BF =⇒ Kn =
BG2

BF 2
=

σ2
n|n−1

σ2
n|n−1 + σ2

W

where BG2 is the square of the error at the previous time.
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