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1 Lecture

Joint Gaussian Random Variables

From the MMSE/LLSE picture, it is easy to see that MMSE 6= LLSE in general. When are they equal? When X
and Y are jointly Gaussian.

(Accordingly, joint Gaussian random variables are nice because the MMSE is hard to compute in many cases – you
have to integrate over the whole joint distribution – whereas computing the LLSE is far easier.)

Theorem. If X and Y are jointly Gaussian, then L[X | Y ] = E[X | Y ].

Definition. If (X1, X2) are jointly Gaussian, then X̄ = (X1, X2) has a multivariate Gaussian distribution
where X̄ is a random vector.

Alternatively, fX1,X2
(x1, x2) is such that

α1x1 + α2x2 ∼ N (·, ·) ∀ α1, α2 ∈ R

(For every weighted combination of x1 and x2, we have a normal distribution.)

In this case, if X1 and X2 are uncorrelated (cov(X1, X2) = 0), then they are also independent. (In general,
“independent” =⇒ “uncorrelated,” but “uncorrelated” 6=⇒ “independent,” so this is powerful.)

Multivariate Gaussian (Generalization of Univariate)
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Recall: cov(x, y) = ρσxσy, where ρ is the correlation coefficient.

In the case where k = 7 and µX = 0, µY = 0,
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If ρ = 0,

fX,Y =
1√

2πσx
e−x

2/2 · 1√
2πσy

e−y
2/2

= fX(x) · fY (y)

=⇒ X,Y independent

(This generalizes for k > 2.)

Thus if X and Y are uncorrelated, they are independent. Intuition: if we have pairwise uncorrelation, Σ becomes a
diagonal matrix and we have no cross terms.

Theorem 6.4. Jointly Gaussian random variables are independent iff they are uncorrelated.

Theorem 6.5. Linear combinations of jointly Gaussian random variables are jointly Gaussian.

Example. If X,Y are i.i.d. N (0, 1), are (X + Y ) and (X − Y ) independent? (Note that any collection of i.i.d.
Gaussians are jointly Gaussian (ρ = 0).

We only need to check correlation because (X + Y ) and (X − Y ) are jointly Gaussian by Theorem 6.5.

cov((X + Y ), (X − Y )) = E[(X + Y )(X − Y )]− E[(X + Y )]E[(X − Y )]

= E[X2 − Y 2]

= E[X2]− E[Y 2]

= σ2
x − σ2

y

= 0

Therefore (X + Y ) and (X − Y ) are uncorrelated and independent.

Example. Let X ∼ N (0, 1), E[X] = 0, and W =

{
+1 w.p. 1/2

−1 w.p. 1/2
, where W and X are independent. Let Y = W ·X.

What is the distribution of Y ?

Intuition: first we get a standard normal N (0, 1) from X. Then we either multiply by +1 or −1, but the standard
normal is symmetric so this doesn’t change the distribution.

cov(X,Y ) = E[XY ] = E[WX2] = E[W ]E[X2] = 0

Hence X and Y are uncorrelated but not independent; they are not jointly Gaussian (even though they are Gaussian
independently). Note, for example, that X + Y 6∼ N . X + Y is either 2X or 0, and half of the mass is at 0 so it is
not Gaussian.

Kalman Filter

The Kalman filter is an algorithm for estimating a sequence of states of a process, given some noisy observations
related to the states. The process will describe a sequence of random variables evolving over time. For example, we
might want to track how a robot moves over time, and the states could be the positions of the robot.

Note: these are called state-space dynamics; the sequence X1, ..., Xn represents the state of the system. However,
we don’t get access to the states. We only get access to some noisy observations (themselves random variables) that
are related to the states, and we want to infer the states. Furthermore, we would like to track states in an online
fashion (in real time).

The good news is that we will stick to linear estimation!
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tl;dr: Given some noisy observations that are related to a sequence of states, we want to infer the sequence of
states. (Note that both the observations and states are random variables, and we can’t observe the states.) We want
to do this online.

Theorem. L[X | Y,Z] = L[X | Y ]+L[X | Z] if Y and Z have nothing to do with each other. In other words, Y and
Z must be orthogonal. If Y ⊥ Z, then we establish orthogonal “axes” such that L[X | Y,Z] = L[X | Y ] +L[X | Z].

Suppose Y and Z are not orthogonal (i.e. correlated). We know the projection of X onto Y and the projection of X
onto Z, but Y and Z are no longer at a 90 degree angle to each other. What do we do? Make Y and Z orthogonal;
take only the orthogonal component of Z!

If Y and Z are not uncorrelated, then L[X | Y, Z] = L[X | Y ] + L[X | Z⊥]. The parallel component of Z brings no
new information, so we only want the portion of Z that is perpendicular (i.e. the part we haven’t seen before).

Z⊥ = Z − Z‖ = Z − ProjY Z = Z − L[Z | Y ]︸ ︷︷ ︸
“innovation,” “new stuff”

The Kalman filter is essentially Gram-Schmidt. It is an iterative way of doing Gram-Schmidt on the fly.
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