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1 Lecture

Neyman-Pearson Hypothesis Testing

There is an observation Y and two hypotheses – one from one setting H0 : Y ∼ fY (y | 0) and one from another
setting H1 : Y ∼ fY (y | 1). We can invent a decision rule r, which takes us from an observation in R to a binary
target {0, 1}. The goal is to minimize the false negative error P (r(Y ) = 0 | X = 1) subject to the constraint that
the false positive error P (r(Y ) = 1 | X = 0) is less than or equal to β.

In other words, we’re most concerned about the false negative errors (which are perhaps a matter of life and death,
if it’s a medical diagnosis), but we have to constrain false positives too (or else the system will just say “positive”
every time, in order to avoid false negatives).

We define the likelihood ratio to be L(y) = fY (y|1)
fY (y|0) . The Neyman-Pearson theorem states that

r∗(Y ) =


1 if L(Y ) > λ

0 if L(Y ) < λ

1 w.p. γ if L(Y ) = λ

The λ threshold we choose depends on our problem.

Some acronyms: PCD is the probability of correct detection (1 minus the false negative probability). PFA is the
probability of false alarm (the false positive probability).

Example: bias of a coin. Under H0, the coin is fair, with P (H) = 0.5. Under H1, the coin is biased, with P (H) = 0.6.
Accordingly, X is either 0 (fair) or 1 (biased). The goal is for the PFA to be less than or equal to 5%, i.e. our
tolerance for false positives is 5% of the time. What is the optimal decision rule for minimizing the probability of
false negatives (i.e. for maximizing PCD)?

We flip the coin n times and observe what comes out. We are interested in the probability we get a particular
sequence, conditioned on each hypothesis:

P (Y1 = y1, ..., Yn = yn | X = 0) = 0.5n (fair coin)

P (Y1 = y1, ..., Yn = yn | X = 0) = 0.6H0.4n−H (biased coin)

where H is the number of heads.

The Neyman-Pearson theorem tells us to take the likelihood ratio

L(y1, ..., yn) =
0.6H0.4n−H

0.5n
=

(
0.4

0.5

)n(
0.6

0.4

)H

Note: we don’t need to know the ordering of heads; we only need the number. H is called a sufficient statistic for
our decision rule.

As H goes up, L(y) goes up exponentially. The Neyman-Pearson theorem says “see when L(y) is above or below
some λ.” But since L(y) increases monotonically as a function of H, the threshold λ on L(y) is equivalent to a
threshold n0 on H.

We should thus calculate n0 for a PFA of 5%. For X = 0, H is distributed as Bin
(
n, 12

)
(so E[H] = n

2 & var(H) = n
4 ).

We can use the CLT to determine an n0 for which P (H ≥ n0 |X = 0) = P
(

(H − E[H])/
√
var(H) ≥ n0−n/2√

n/2

)
= 0.05.
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Estimation

LLSE (linear least squares estimation) and MMSE (minimum MSE) estimation have many applications, e.g. in
sensor networks, radar, and ML. In them, we observe the random variable Y and turn it into an estimate X̂ of the
desired random variable X. The goal is to estimate X from Y as accurately as possible, i.e. minimize the error ∆.
Specifically, we would like to minimize E[∆2].

We are assumed to know the joint distribution of X and Y (Bayesian setting).

When we do linear estimation, X̂ is constrained to be of the form X̂ = a + bY for a, b ∈ R. MMSE estimation
explicitly minimizes an error and gives us the best of all estimators (linear, quadratic, etc.) but is harder to do.

LLSE

LLSE finds X̂ = a + bY as mina,b E[(X − (a + bY ))2] = mina,b E[∆2]. This can be done via calculus: just set the
partial derivatives of E[∆2] (which we’ll alternatively call ξ) to 0 and solve for a and b.

ξ(a, b) = E[X2 − 2(a+ bY )X + (a+ bY )2]

= E[X2]− 2aE[X]− 2bE[XY ] + a2 + 2abE[Y ] + b2E[Y 2]

Then

∂ξ

∂a
= 0⇒ −2E[X] + 2a+ 2bE[Y ] = 0

∂ξ

∂b
= 0⇒ −2E[XY ] + 2aE[Y ] + 2bE[Y 2] = 0

Solving, we find that

b =
cov(X,Y )

var(Y )

a = E[X]− bE[Y ]

cov(X,Y ) = E[XY ]− E[X]E[Y ]

and therefore X̂ = L[X | Y ] = E[X] + cov(X,Y )
var(Y ) (Y − E[Y ]).

There are two important properties of our estimate L[X | Y ].

1. It is unbiased. E[X̂] = E[X], i.e. E[∆] = 0.

2. The error and the observation are uncorrelated. cov(∆, Y ) = 0, i.e. E[∆Y ] = 0 (projection property).

Note: we can greatly simplify our lives by working with zero-mean versions of X and Y . Let

X = X̄ + E[X]

Y = Ȳ + E[Y ]

where X̄ and Ȳ have zero mean. Then we can form L[X̄ | Ȳ ] and “add back” the means later. There are two main
benefits: (1) it simplifies calculations (a becomes 0, while b stays the same), and (2) it permits a geometric treatment.

To be concrete,

L[X̄ | Ȳ ] =
cov(X̄, Ȳ )

var(Ȳ )
Ȳ

But this is the same as cov(X,Y )
var(Y ) = b in the general formula.
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Vector Space Representation of Random Variables

There is a notion of a Hilbert space, which is called a “complete inner product vector space” and which allows us
to think about random variables geometrically. From this point on, we will assume that X,Y are zero-mean random
variables with finite variance.

Note: horizontal alignment signifies equivalence.

• (2) is a key point, as it describes how we define inner products.

• By (3), the norm (length) of a vector ~X is ‖ ~X‖ = sqrt(〈 ~X, ~X〉) and is equivalent to
√

E[X2].

• ρ in (4) is the correlation coefficient, meaning angles tell us how correlated the random variables are.

Error is minimized when ∆
is orthogonal to Y .

Therefore, X̂ = bY = Projection~Y
~X

=

〈
X,

Y

‖Y ‖

〉
Y

‖Y ‖

=
〈X,Y 〉
‖Y ‖2

· Y .
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