1 Lecture

Hypothesis Testing

We observe a random variable Y (e.g. caloric intake). We say that

 $\begin{cases} Y \sim f(y \mid 0) & \text{under hypothesis } H_0 \text{ (e.g. no cancer)} \\ Y \sim f(y \mid 1) & \text{under hypothesis } H_1 \text{ (e.g. cancer)} \end{cases}$

and define the **decision rule** as $r : \mathbb{R} \mapsto \{0, 1\}$ ("takes an observation as input and returns one of two hypotheses"). The decision will not always be 100% accurate. There are two types of errors:

- If r(y) = 0 but it's actually H_1 , it's a false negative.
- If r(y) = 1 but it's actually H_0 , it's a false positive.

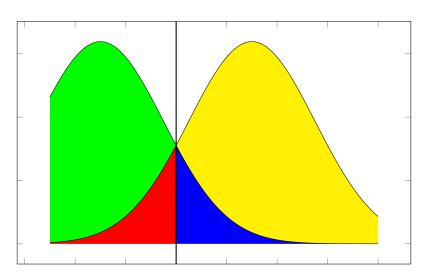
Bayesian Formulation

We have prior probabilities $\pi(0)$ for H_0 and $\pi(1)$ for H_1 . We can model each hypothesis as a Gaussian, centered at 0 for H_0 and 1 for H_1 . Our task is to decide whether an observation comes from the H_0 Gaussian or the H_1 Gaussian.

In other words, H_0 produces observations $Y \sim \mathcal{N}(0, \sigma^2)$ and H_1 produces observations $Y \sim \mathcal{N}(1, \sigma^2)$. We will assume uniform priors, i.e. $\pi(0) = \frac{1}{2}$ and $\pi(1) = \frac{1}{2}$.

Since the Gaussians intersect at $\frac{1}{2}$, we can formalize our decision rule as

$$r(y) = \begin{cases} 0 & \text{if } y < 1/2 \\ 1 & \text{if } y \ge 1/2 \end{cases}$$



The red region signifies false negative error, while the blue region signifies false positive error.

It turns out that this is the same as MLE:

$$r(y) = \text{MLE}[X \mid Y = y]$$
$$= \begin{cases} 0 & \text{if } L(y) < 1\\ 1 & \text{if } L(y) \ge 1 \end{cases}$$

The likelihood is

$$L(y) = \frac{f(y \mid 1)}{f(y \mid 0)} = \frac{\exp\left(-\frac{(y-1)^2}{2\sigma^2}\right)}{\exp\left(-\frac{y^2}{2\sigma^2}\right)} = \exp\left(\frac{2y-1}{2\sigma^2}\right)$$

so L(y) > 1 iff y > 1/2.

Minimum Cost Criterion

Imagine we pay one unit for every error (i.e. for a false positive or a false negative). To find the optimal decision rule r, we can minimize the expected cost:

$$\min_{r:\mathbb{R}\mapsto\{0,1\}} \int_{-\infty}^{\infty} \mathbb{1}\{r(y) = 1\} \cdot \pi(0) \cdot f(y \mid 0) \, dy$$
$$= \min_{r:\mathbb{R}\mapsto\{0,1\}} \int_{-\infty}^{\infty} \mathbb{1}\{r(y) = 0\} \cdot \pi(1) \cdot f(y \mid 1) \, dy$$

Theorem. The minimizer r^* is

$$r^*(y) = \mathrm{MAP}[X \mid Y = y] = \begin{cases} 0 & \text{if } L(y) < \frac{\pi(0)}{\pi(1)} \\ 1 & \text{if } L(y) \ge \frac{\pi(0)}{\pi(1)} \end{cases}$$

Proof. Total cost is

$$\int_{-\infty}^{\infty} \left(\mathbb{1}\{r(y) = 1\} \cdot \pi(0) \cdot f(y \mid 0) + \mathbb{1}\{r(y) = 0\} \cdot \pi(1) \cdot f(y \mid 1)\right) dy$$

For each y, we will have either the left term or the right term. Therefore, to minimize this cost we want to choose r(y) such that it selects the lower of the two terms.

$$r^{*}(y) = \begin{cases} 0 & \text{if } \pi(1)f(y \mid 1) < \pi(0)f(y \mid 0) \\ 1 & \text{if } \pi(1)f(y \mid 1) \ge \pi(0)f(y \mid 0) \\ \end{cases}$$
$$= \begin{cases} 0 & \text{if } \frac{f(y|1)}{f(y|0)} < \frac{\pi(0)}{\pi(1)} \\ 1 & \text{if } \frac{f(y|1)}{f(y|0)} \ge \frac{\pi(0)}{\pi(1)} \\ \end{cases}$$
$$= \begin{cases} 0 & \text{if } L(y) < \frac{\pi(0)}{\pi(1)} \\ 1 & \text{if } L(y) \ge \frac{\pi(0)}{\pi(1)} \end{cases}$$

Hence the MAP estimate is optimal according to this formulation of hypothesis testing. (MAP: here the decision rule returns the hypothesis that has the largest product of prior and density.) But this is not the only formulation...

Neyman-Pearson Formulation

We can also find the optimal decision rule according to a different criterion. In this formulation, we do not have priors and can only have two hypotheses. We'd like to specify a decision rule $r : \mathbb{R} \mapsto \{0, 1\}$ that minimizes the false negative error, i.e.

$$\min_{r:\mathbb{R}\mapsto\{0,1\}} P(r(y) = 0 \mid X = 1)$$

s.t.

$$P(r(y) = 1 \mid X = 0) \le \beta$$

If we don't constrain the false positive error to be less than a constant, the optimal decision rule will always declare 1. *Theorem.* The optimizer r^* is a randomized threshold rule given by

$$r^{*}(y) = \begin{cases} 1 & \text{if } L(y) > \lambda \\ 1 \text{ with probability } \gamma & \text{if } L(y) = \lambda \\ 0 \text{ with probability } 1 - \gamma & \text{if } L(y) = \lambda \\ 0 & \text{if } L(y) < \lambda \end{cases}$$

where γ, λ are calculated as per

require
$$P(r^*(y) = 1 \mid X = 0) = \beta$$

 $P(L(y) > \lambda \mid X = 0) + \gamma P(L(y) = \lambda \mid X = 0) = \beta$

In other words, the the false positive probability must be equal to β .

Note: we do this because the minimum constrained r will maximize the false positive error, i.e. the false positive error will be exactly equal to β .

Example: Gaussian again. We have that H_0 has observations distributed as $y \sim \mathcal{N}(0, \sigma^2)$, and H_1 has observations distributed as $y \sim \mathcal{N}(1, \sigma^2)$. The likelihood $L(y) = \exp\left(\frac{2y-1}{2\sigma^2}\right)$ is an increasing function s.t.

$$L(y) > \lambda \iff y > \sigma^2 \ln \lambda + \frac{1}{2} = y_0$$

 $P(L(y) = \lambda \mid X = 0) = 0$ (since L(y) is continuous), so we can pick anything for γ . We will pick $\gamma = 1$. Then

$$P(Y > y_0) = \beta \iff P(\mathcal{N}(0, 1) \ge y_0) = \beta$$

and

$$r^*(y) = \begin{cases} 1 & \text{if } y \ge y_0 \\ 0 & \text{if } y < y_0 \end{cases}$$

Example: no observation y. We have two hypotheses H_0 and H_1 , but no observations. Our decision rule r will either be a constant or a random variable. If r is a constant, then there is only one possibility s.t. it satisfies the constraint: r = 0. Here the objective is P(r = 0 | X = 1) = 1. But 1 is not a very good value for the objective (in fact it is the worst value possible). So we will choose to make r a random variable:

$$r = \begin{cases} 1 \text{ with probability } \beta & \text{meaning } P(r=1 \mid X=0) = P(r=1) = \beta \\ 0 \text{ with probability } 1-\beta & \text{meaning } P(r=0 \mid X=1) = P(r=0) = 1-\beta \le 1 \end{cases}$$

Proof: r^* is the optimizer of Neyman-Pearson. Let r be any feasible decision rule that satisfies the constraints (i.e. s.t. $P(r(y) = 1 \mid X = 0) \le \beta$). We want to show that

$$P(r^*(y) = 0 \mid X = 1) \le P(r(y) = 0 \mid X = 1)$$

i.e. that the objective value for r^* is less than or equal to the objective value for any other r. By the definition of r^* ,

$$(r^*(y) - r(y)) \cdot (L(y) - \lambda) \ge 0$$

since $y, r^*(y) = 1$ and $r(y) \in \{0, 1\}$.

We can verify the equality by stepping through the cases for comparing L(y) and λ . First we'll take expectations under H_0 , X = 0:

$$\begin{split} \mathbb{E}[r^*(y)L(y) \mid X = 0] - \mathbb{E}[r(y)L(y) \mid X = 0] \geq \lambda \left(\mathbb{E}[r^*(y) \mid X = 0] - \mathbb{E}[r(y) \mid X = 0] \right) \\ = \lambda \left(P(r^*(y) = 1 \mid X = 0) - P(r(y) = 1 \mid X = 0) \right) \geq 0 \end{split}$$

Note that $P(r^*(y) = 1 \mid X = 0) = \beta$ and $P(r(y) = 1 \mid X = 0) \le \beta$. Therefore

$$\mathbb{E}[r^*(y)L(y) \mid X = 0) \ge \mathbb{E}[r(y)L(y) \mid X = 0]$$

$$\int r^*(y)\frac{f^*(y\mid 1)}{f^*(y\mid 0)}f^*(y\mid 0) \, dy \ge \int r(y)\frac{f(y\mid 1)}{f(y\mid 0)}f(y\mid 0) \, dy$$

$$\mathbb{E}[r^*(y)\mid X = 1] \ge \mathbb{E}[r(y)\mid X = 1]$$

$$P(r^*(y) = 1\mid X = 1) \ge P(r(y) = 1\mid X = 1)$$

$$P(r^*(y) = 0\mid X = 1) \le P(r(y) = 0\mid X = 1)$$

Example: exponential.

$$H_0: Y_1, \dots, Y_n \sim \operatorname{Exp}(\lambda_0)$$
$$H_1: Y_1, \dots, Y_n \sim \operatorname{Exp}(\lambda_1)$$

for $\lambda_1 > \lambda_0$ and hence $\frac{1}{\lambda_0} > \frac{1}{\lambda_1}$.

The scenario is as follows: a factory is producing lightbulbs. If the factory is working properly, the lightbulbs have a lifetime that is exponentially distributed with parameter λ_0 . If it is not, we'll end up with defective lightbulbs that have lifetimes exponentially distributed with parameter λ_1 .

$$L(y_1, ..., y_n) = \frac{\prod_{i=1}^n \lambda_1 e^{-\lambda_1 y_i}}{\prod_{i=1}^n \lambda_0 e^{-\lambda_0 y_i}}$$
$$= \left(\frac{\lambda_1}{\lambda_0}\right)^n \exp\left(-(\lambda_1 - \lambda_0) \sum_{i=1}^n y_i\right)$$

Let $S = \sum_{i=1}^{n} y_i$. Then

$$L(S) = \left(\frac{\lambda_1}{\lambda_0}\right)^n \exp\left(-(\lambda_1 - \lambda_0)S\right) \quad \text{which is decreasing.}$$
$$r^*(y) = \begin{cases} 0 & \text{if } S > S_0\\ 1 & \text{if } S < S_0 \end{cases}$$

where S_0 is determined by solving

$$\beta = P(S < S_0 \mid X = 0)$$

which can be approximated with the CLT. Note that S, as a sum of exponentials, is actually $\text{Erlang}(\lambda_0, n)$.

$$\frac{(y_1 + \dots + y_n) - n\lambda_0^{-1}}{\sqrt{n} \cdot \lambda_0^{-1}} \approx \mathcal{N}(0, 1)$$

$$\rightarrow P(S < S_0 \mid X = 0) \approx P\left(\mathcal{N}(0, 1) < \frac{S_0 - n\lambda_0^{-1}}{\sqrt{n} \cdot \lambda_0^{-1}}\right)$$

We can use the standard normal table to obtain the actual value.