
EE 126 Probability and Random Processes
March 13, 2018 Continuous-Time Markov Chains I

1 Reading

7.5. Continuous-Time Markov Chains

We model a Markov chain where the time spent between transitions is a continuous random variable. We will call
Xn the state right after the nth transition, Yn the time of the nth transition, and Tn the time between the (n− 1)st
and the nth transition. Furthermore, X0 is the initial state and Y0 = 0.

If the current state is i, we will assume that

• the time until the next transition is exponentially distributed with a given parameter vi

• the next state will be j with a given probability pij

independent of the past history of the process and of the next state/transition. Thus

P (Xn+1 = j, Tn+1 ≥ t | T1 = t1, ..., Tn = tn, X0 = i0, ..., Xn = i) = P (Xn+1 = j, Tn+1 ≥ t | Xn = i)

= P (Xn+1 = j | Xn = i)P (Tn+1 ≥ t | Xn = i)

= pije
−vit

The parameter vi is called the transition rate out of state i. The quantity qij = vipij is the transition rate from i to
j, i.e. the average number of transitions from i to j per unit time spent at i.

If we have a CTMC with a single recurrent class, then the states j are associated with steady-state probabilities πj
with the properties that limt→∞ P (X(t) = j | X(0) = i) = πj , πj = 0 for transient states, and πj > 0 for recurrent
states. We can solve for the steady-state probabilities according to the balance equations

πj
∑
k 6=j

qjk =
∑
k 6=j

πkqkj for j = 1, ...,m

m∑
k=1

πk = 1

W13.5. Continuous-Time Markov Chains

A continuous-time setting is sometimes simpler because only one event can occur at once. A continuous-time Markov
chain is defined by its initial distribution π and rate matrix Q, and exhibits the property that

P (Xt+ε = j | Xt = i,Xu, u < t) = 1{i = j}+Q(i, j)ε+ o(ε)

In other words, the process jumps from i to j 6= i with probability Q(i, j)ε in ε� 1 time steps. Therefore Q(i, j) is
the probability of jumping from i to j per unit of time.

If a CTMC is irreducible, then the states are either all transient, all positive recurrent, or all null recurrent (cor-
responding to the CTMC being “transient,” “positive recurrent,” or “null recurrent,” respectively). There is no
periodicity in continuous time.

If a CTMC is positive recurrent, it has a unique stationary distribution π where π(i) is the long-term fraction of
time that Xt = i. If a CTMC is not positive recurrent, it has no stationary distribution and the fraction of time
spent in any state goes to 0.
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2 Lecture

Poisson Process

P (Nt = k) =
e−λt(λt)k

k!

The Si’s are i.i.d. ∼ Exp(λ). E[Si] = 1/λ. var(Si) = 1/λ2.

Example: lightbulbs. Two lightbulbs have independent and exponentially distributed lifetimes Ta and Tb with pa-
rameters λa and λb respectively. We want to determine the distribution of Z = min(Ta, Tb), i.e. the time for the
first lightbulb to burn out:

P (Z > z) = P (Ta > z)P (Tb > z)

= e−λaze−λbz

= e−(λa+λb)z =⇒ Z ∼ Exp(λa + λb)

This is a merged Poisson process: we are interested in the “first arrival time” of either of the two lightbulbs.

From this perspective, Ta and Tb are the inter-arrival times of the first arrivals of two independent Poisson processes
with rates λa and λb, respectively. If we merge these two processes, the first arrival is at min(Ta, Tb). But this is the
first arrival of the merged Poisson process whose rate is (λa +λb)! And this arrival time is exponentially distributed.

Erlang-k

The Erlang distribution of the kth order describes Tk, the time of the kth arrival.

Tk = S1 + S2 + ...+ Sk = sum of k i.i.d. Exp(λ) random variables

which implies that E[Tk] = k/λ and var(Tk) = k/λ2. The distribution is

P (kth arrival is in (t, t+ dt)) = fTk
· dt

= P (k − 1 arrivals in the interval (0, t) and kth arrival in (t, t+ dt))

= P (k − 1 arrivals ∈ (0, t)) · P (1 arrival ∈ (t, t+ dt))

=
e−λt(λt)k−1

(k − 1)!
· λdt

=⇒ fTk
(t) =

e−λtλktk−1

(k − 1)!

We can use this to show that

P (Nt = k) =

∫ t

0

P (Nt = k | Tk = s)fTk
(s)ds

=

∫ t

0

e−λ(t−s)
λksk−1e−λs

(k − 1)!
ds

=
e−λt

(k − 1)!
λk

∫ t

0

sk−1ds

=
e−λt(λt)k

k!

RIP

RIP stands for random incidence “paradox”. Fix a time t∗ and consider the length L of the inter-arrival time
containing t∗. (The analogy: we arrive at a bus stop at a certain time, and we’re interested in the bus inter-arrival
segment that our arrival time intersects.) How is L distributed?

2



Setup for RIP. By t∗, we assume
that the process has been run-
ning for an infinite amount of
time, and accordingly that an ar-
rival has already occurred. [U, V ]
is the inter-arrival interval that
contains t∗, meaning L = V − U .
(Specifically, U is the time of the
first arrival prior to t∗; V is the
time of the first arrival after t∗.)

We have

P (t∗ − U > x) = P (x seconds have elapsed since the last “success”)

= P (0 arrivals in an interval of length x)

= e−λx ∼ Exp(λ)

and
P (V − t∗) ∼ Exp(λ) by memorylessness.

Since L = (t∗ − U) + (V − t∗), we have that L ∼ Exp(λ) + Exp(λ) = Erlang-2.

Continuous-Time Markov Chains

Define X to be a countable set of states. Let π be a probability distribution on X , and Q be the rate matrix. Then
a continuous-time Markov chain (CTMC), with initial distribution π and rate matrix Q, is a process {Xt}t≥0
s.t.

P (X0 = i) = π(i)

P (Xt+ε = j | Xt = i,Xu, u ≤ t) = P (Xt+ε = j | Xt = i) for all t ≥ 0 and (i, j) ∈ X

Q = {Q(i, j)} for all i, j ∈ X such that Q(i, j) ≥ 0 (for j 6= i). We have that
∑
j∈X Q(i, j) = 0, i.e. the row sum = 0.
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