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Recap

A forward Markov chain says “given today, tomorrow doesn’t depend on yesterday.” A backward Markov chain says
“given today, yesterday doesn’t depend on tomorrow.” This is the same statement (see HW6), so a Markov chain in
reverse is always a Markov chain. But it is not necessarily reversible.

Poisson Process

In a Poisson process, the arrival time Tn = S1 + S2 + ... + Sn (the sum of the inter-arrival times, which are i.i.d.
exponential).

Recall: Exp(λ) is memoryless. We have P (τ ≤ t) = 1− e−λt, P (τ > t) = e−λt, and P (τ > t+ s | τ > t) = P (τ > s).
We also have P (τ ≤ t + ε | τ > t) [“success happened between t and ε”] = λε + o(ε). o(ε) is defined as something

that goes to 0 more quickly than ε, i.e. limε→0
o(ε)
ε = 0.

Then

P (τ > t+ ε | τ > t) = P (τ > ε) = e−λε = 1− λε+ o(ε)

P (τ < t+ ε | τ > t) = λε+ o(ε)

P (no arrival in (t, t+ ε)) = 1− λε+ o(ε)

P (1 arrival in (t, t+ ε)) = λε+ o(ε)

P (≥ 2 arrivals in (t, t+ ε)) = o(ε)

Theorem. The Poisson process is memoryless. It inherits this property from the exponential which defines it.

Let N = {Nt, t > 0} be a Poisson process with parameter λ. Fix t > 0. Given {Ns, s ≤ t} for s ≥ 0, the process
{Ns+t −Nt} for s ≥ 0 is also a Poisson process with parameter λ.

A key implication of this is that PP(λ) has independent and stationary increments. (“Independent” means that two
disjoint intervals are independent. “Stationary” means that if we slide in time, the intervals don’t change.) For any
0 ≤ t1 < t2 < ..., {Ntn+1

−Ntn} are independent and the distribution depends only on the interval length tn+1 − tn.

Theorem. If N = {Nt, t ≥ 0} is a PP(λ) random process, then Nt has a Poisson(λt) distribution.

Proof. We will make use of the density of jumps. Let Tn be the nth jump, and let Sn = Tn−Tn−1 be the inter-arrival
time between (n− 1) and n. Let’s calculate the joint density of the arrivals:

P (T1 ∈ (t1, t1 + dt1), T2 ∈ (t2, t2 + dt2), ..., Tn ∈ (tn, tn + dtn))

= P (S1 ∈ (t1, t1 + dt1), S2 ∈ (t2 − t1, t2 − t1 + dt2), ..., Sn ∈ (tn − tn−1, tn − tn−1 + dtn), Sn+1 > t− tn)

= (λe−λt1dt1)(λe−λ(t2−t1)dt2) · · · (λe−λ(tn−tn−1)dtn) · e−λ(t−tn)

= λndt1dt2 · · · dtn · e−λt
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Therefore P (Nt = n) = e−λtλn
∫
S
dt1dt2 · · · dtn. Note that n jumps in (0, t) are equally likely in (0, t), and S is the

volume of {t1, t2, ..., tn | 0 < t1 < t2 < ... < tn < t} ⊂ [0, t]n corresponding to a specific ordering of t1, t2, ..., tn.
There are n! such orderings, which are equally likely by symmetry. So S = Volume(0, t)n/n! = tn/n!, and

P (Nt = n) = e−λtλn
∫
S

dt1dt2 · · · dtn =
e−λt(λt)n

n!

Example: fish. Bob catches fish according to a Poisson process of rate λ = 0.6 fish/hr. If he catches at least one fish
in the first two hours, he quits. Otherwise, he continues until he has caught his first fish.

What is the probability that Bob catches at least two fish? Since this can only happen if he catches two fish in the
first two hours,

P (Bob catches at least two fish) = 1− P (0 fish in (0, 2))− P (1 fish in (0, 2))

= 1− e−1.2 − 1.2e−1.2

What is the expected number of fish that Bob catches? “Total number of fish caught” is equal to the number of fish
caught in (0, 2) plus the number of fish caught in (2,∞). Therefore

E[fish caught by Bob] = E[# fish in (0, 2)] + E[# fish in (2,∞)]

= 1.2 + (1)(e−1.2)

Splitting and Merging of Poisson Process

Suppose we have a Poisson process with rate λ which is split according to probabilities p and 1 − p. Then each of
the splits will also be Poisson processes (with rates λp and λ(1− p), respectively).

It’s the same deal if we merge two Poisson processes (with rates λ1 and λ2) into one stream. The merged stream
will be a Poisson process with rate λ1 + λ2.
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