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1 Reading

W13.4. Poisson Process

A Poisson process, parameterized by the rate λ, is defined as {Nt, t ≥ 0} where

Nt =

{
max{n ≥ 1 | Tn ≤ t} if t ≥ T1
0 if t < T1

Tn = S1 + ...+ Sn where S1, ..., Sn (the times between jumps) are i.i.d. Exp(λ) random variables. We refer to Tn as
the nth jump time of the Poisson process.

The Poisson process is memoryless, and Nt has a Poisson distribution with mean λt.

6.1. The Bernoulli Process

A Bernoulli process involves a sequence of independent Bernoulli trials (i.e. coin flips) with fixed parameter p across
all flips. The binomial and geometric random variables are associated with the Bernoulli process.

• The Bernoulli process is memoryless: if we start at any point in the Bernoulli process, the rest of the sequence
can be modeled by a Bernoulli process that is independent of the past.

• If T̄ is the time of the first success after time n, then T̄ − n has a geometric distribution that is independent
of X1, ..., Xn (the past values).

We can alternatively describe the Bernoulli process in terms of arrivals. We call Yk the time of the kth arrival, and
Tk = Yk − Yk−1 (or T1 = Y1 for k = 1) the kth inter-arrival time. Then Yk = T1 + T2 + ...+ Tk. (Note: the Tis will
be i.i.d. geometric random variables.)

The mean of Yk is E[Yk] = k/p, the variance is var(Yk) = k(1− p)/p2, and the PMF is pYk(t) =
(
t−1
k−1
)
pk(1− p)t−k.

6.2. The Poisson Process

The Poisson process is the continuous version of the Bernoulli process, and should be used when there is no natural
way to divide time into discrete intervals (e.g. if we don’t know how small to make the intervals).

Let P (k, τ) = P (there are exactly k arrivals during an interval of length τ), which should hold for all intervals of
length τ . There is also λ > 0, the arrival rate of the process.

A Poisson process is defined by the following properties:

• Time homogeneity: the probability P (k, τ) of k arrivals is the same for all intervals of the same length τ .

• Independence: the number of arrivals during one interval is independent of all arrivals outside of this interval.

• Small interval probabilities: the probabilities P (k, τ) satisfy P (0, τ) = 1− λτ + o(τ), P (1, τ) = λτ + o1(τ),

and P (k, τ) = ok(τ) (for k = 2, 3, ...) where o(τ) fulfills limτ→0
o(τ)
τ = 0 and ok(τ) fulfills limτ→0

ok(τ)
τ = 0.
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The Poisson and exponential random variables are both associated with the Poisson process. The number Nτ of
arrivals can be described by a Poisson random variable, and the time T until the first arrival can be described by an
exponential random variable.

Like the Bernoulli process, the Poisson process is memoryless. Also, if T̄ is the time of the first arrival after time t,
then (T̄ − t) ∼ Exp(λ) and is independent of the history of the process up to time t.

We can describe the Poisson process as a sequence of independent exponential random variables T1, T2, ... with
common parameter λ. Then the kth arrival time Yk will be equal to T1 + ...+ Tk. The mean of Yk will be given by

E[Yk] = k/λ, the variance will be given by var(Yk) = k/λ2, and the PDF is fYk(y) = λkyk−1e−λy

(k−1)! for y ≥ 0.

Finally, we can take two independent Poisson processes with rates λ1 and λ2 and merge them by recording an arrival
whenever one occurs in either process. This will form a new Poisson process with rate λ1 + λ2. We can also take
a single Poisson process and split it, by keeping each arrival with probability p and discarding it with probability
1− p. The result is a Poisson process with rate λp. (Note: analogous results hold for Bernoulli processes.)

6.2.1. Sums of Random Variables

Let N,X1, X2, ... be independent random variables, where N takes nonnegative integer values. Let Y = X1+ ...+XN

for positive values of N , and let Y = 0 when N = 0.

• If Xi ∼ Bernoulli(p) and N ∼ Binomial(m, q), then Y ∼ Binomial(m, pq).

• If Xi ∼ Bernoulli(p) and N ∼ Poisson(λ), then Y ∼ Poisson(λp).

• If Xi ∼ Geometric(p) and N ∼ Geometric(q), then Y ∼ Geometric(pq).

• If Xi ∼ Exp(λ) and N ∼ Geometric(q), then Y ∼ Exp(λq).

2 Lecture

Hitting Times

A B C

D E

1/2 1

1/3

1/3

1/2
1/2

1

1/2

1/3

Hitting time: how many steps does it take to reach E for the first time, starting from A? Let TE = minn≥0{Xn = E}.
Then βE(A) = E[TE | X0 = A]. To solve for βE(A), we need to couple it with βE(i) (for all other states i) through
the first-step equations.

More generally, we’ll define TA = minn≥0{Xn ∈ A} where A ⊂ X . Then β(i) = E[TA | X0 = i], and the first-step
equations are

• β(i) = 0, i ∈ A, ∀i ∈ X

• β(i) = 1 +
∑
j∈X Pijβ(j), i /∈ A

Note that we abbreviate βdestination(i) as β(i).

Let us define P (hitting C before E), starting at A, as

α(A) = P (TC < TE | X0 = A)
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We again need to calculate α(i) for i = A,B,C,D,E.

α(A) =
1

2
α(B) +

1

2
α(D)

α(B) = α(C)

α(C) = 1

α(D) =
1

3
α(A) +

1

3
α(B) +

1

3
α(E)

α(E) = 0

If we solve this, we will find that α(A) = 4/5, α(B) = 1, α(C) = 1, α(D) = 3/5, and α(E) = 0.

Accumulating Rewards

Let Xn be a Markov chain on X with transition probabilities P . Then define A ⊂ X , g : X 7→ R, and TA the hitting
time for A. If

γ(i) = E

[
TA∑
n=0

g(Xn) | X0 = i

]
then

γ(i) =

{
g(i) if i ∈ A
g(i) +

∑
j Pijγ(j) if i /∈ A

Example. Flip a fair coin until we get two consecutive heads. What is the expected number of tails? (The number
of tails corresponds to our expected payout.) The diagram for the Markov chain looks like this:

S

H

T

HH

1/2 1/2

1/2

1/2

1/21/2

1/2

We have g(S) = 0, g(T ) = 1, g(H) = 0, and g(HH) = 0. So

γ(S) = 0 +
1

2
γ(H) +

1

2
γ(T )

γ(H) = 0 +
1

2
γ(T ) +

1

2
γ(HH)

γ(T ) = 1 +
1

2
γ(H) +

1

2
γ(T )

γ(HH) = 0

Solving yields γ(S) = 3. In other words, we expect to see 3 tails.

Reversible Markov Chains

Assume we have an irreducible Markov chain which is started at its invariant distribution π. Suppose that for every
n, (X0, X1, ..., Xn) has the same distribution as (Xn, Xn−1, ..., X0) (i.e. the time-reversal version). Then we call the
chain reversible.

“If we take a sequence and play it forward or backward, it should be produced by this chain with this probability.”
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Fact: reversible or not, if we start with the Markov chain at π, the “time-reversed” sequence is a Markov chain.
Why? Well,

P (Xk = i | Xk+1 = j,Xk+2 = ik+2, ..., Xn = in) =
P (Xk = i,Xk+1 = j,Xk+2 = ik+2, ..., Xn = in)

P (Xk+1 = j,Xk+2 = ik+2, ..., Xn = in)

=
π(i) · Pij · Pj,ik+2

· Pik+2,ik+3
· · ·Pin−1,in

π(j) · Pj,ik+2
Pik+2,ik+3

· · ·Pin−1,in

=
π(i)Pij
π(j)

= P̃ji by definition.

This is a Markov chain since it depends only on i and j. The chain is reversible if Pji = P̃ji. (For a reversed Markov

chain, P̃ji = Pji for all i, j ∈ X . Both the forward and reverse sequences should be described by the same machinery.)

For a reversible Markov chain, π(j)Pji = π(i)Pij for all i, j ∈ X . This is the condition for reversibility. (These
pairwise “FLOW IN” = “FLOW OUT” equations are known as the detailed balance equations.)

Note: reversibility implies invariance.

Poisson Process

The geometric distribution (discrete time to success) is to the exponential distribution (continuous time to success) as
the Bernoulli coin-flip process is to the Poisson process. The Poisson process is a continuous-time counting process.

To reiterate, the Poisson process is the continuous-time analogue of the “coin-flip” process (where the arrival time is
continuous). It’s a good model for arrival and departures, customers at a cashier, or photons hitting a detector.

We’re just counting arrivals.

Nt represents how many things have
arrived. Ti is the “arrival time,” i.e.
the absolute time at which an ar-
rival happens. Si is the “inter-arrival
time,” i.e. the time between arrivals
(represented as i.i.d. Exp(λ) random
variables with λ > 0). Note that

T1 = S1, T2 = S1+S2, and Ti =
∑i
k=1 Sk.

Nt =

{
maxn≥1{n | Tn ≤ t} for t ≥ 0

0 for t < T1

By defining our model in terms of i.i.d. exponentially random arrivals, we get a process which is memoryless! If we
were to translate the origin, we would still have a Poisson process.
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