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1 Reading

W1. Markov Chains

A Markov chain is a sequence {X(n), n ≥ 0} that goes from state i to state j with transition probability P (i, j)
(independently of the states it visited before). We call X(n) the state of the Markov chain at time n, where X(0) is
the initial state. We refer to X as the set of states.

It follows that
P (X(n+ 1) = j | X(n) = i, X(m) for all m < n) = P (i, j)

for all i, j ∈ X and n ≥ 0.

The Markov property revolves around the idea that the probability of moving from state i to state j does not
depend on any state before i. (Each state contains all the information necessary to predict the future of the process.)

If a Markov chain is in state j with probability πn(j) at step n for some n ≥ 0, then it will be in state i at step n+ 1
with probability πn+1(i) where

πn+1(i) =
∑
j∈X

πn(j)P (j, i)

for i ∈ X .

Note: πn(i) = π0(i) for all n ≥ 0 and all i ∈ X iff π0 = π0P [where we treat π as a row vector with components π0(i)
and P as a square matrix with entries P (i, j)]. We also have πn+1 = πnP and πn = π0P

n. Incidentally, if the first
result is true, π0 is an invariant distribution – a nonnegative solution π of π = πP whose components sum to one.

A Markov chain is irreducible if it can go from any state to any other state (even if it takes many time steps). If a
Markov chain is finite and irreducible, it has a unique invariant distribution π, and π(i) is the long-term fraction
of time that X(n) is almost surely equal to i.

π(i) = lim
N→∞

1

N

N−1∑
n=0

1[X(n) = i]

W2.4. Law of Large Numbers for Markov Chains

An invariant probability of a state is its probability under the invariant distribution of the Markov chain. For
example, the Markov chain X(n) on [0, 1] with P (0, 1) = P (1, 0) spends half of the time in state 0, and half in state
1. Therefore the invariant probability of state 0 would be 1/2. (Note: the invariant probability is equivalent to the
long-term fraction of time that a finite irreducible Markov chain spends in a given state.)

Long-term fraction of time is justified by the strong law of large numbers.

W13.3. Infinite Markov Chains

Let us study Markov chains on a countably infinite space, i.e. where X = {0, 1, ...} instead of (e.g.) {1, 2, ..., N}. We
will assume we are given an initial distribution π = {π(x), x ∈ X}, where π(x) ≥ 0 and

∑
x∈X π(x) = 1. We will also

assume we are given a set of nonnegative numbers {P (x, y)} for x, y ∈ X such that
∑

y∈X P (x, y) = 1 for all x ∈ X .

1



Then the sequence {X(n)} for n ≥ 0 is a Markov chain with initial distribution π and probability transition matrix
P if

P (X(0) = x0, ..., X(n) = xn) = π(x0)P (x0, x1) · · ·P (xn−1, xn)

7.1. Discrete-Time Markov Chains

We’re interested in models for which some notion of a state encodes all of the information necessary to predict the
future from the past. The state should take on only a finite set of values, and should change over time according to
time-independent transition probabilities. Such models can be applied to an incredible number of dynamical systems
whose evolution over time involves uncertainty.

One model that meets our criteria is the discrete-time Markov chain, in which the state changes at discrete
time instants indexed by the variable n. At each time step, the state is denoted Xn and belongs to a finite set
S = {1, ...,m} of potential states (this is the state space). There are also transition probabilities: if the current
state is i, there is probability pij that the next state will be j. More specifically,

pij = P (Xn+1 = j | Xn = i)

for i, j ∈ S. The key assumption is that the transition probabilities are the same across all time steps; pij will retain
its value no matter how state i was reached. This can be formalized as the Markov property:

P (Xn+1 = j | Xn = i,Xn−1 = in−1, ..., X0 = i0) = P (Xn+1 = j | Xn = i) = pij

The Markov property tells us that the probability law of the next state Xn+1 depends on the past only through the
value of the present state Xn.

Specification of Markov Models
A Markov chain is specified by a set of states S = {1, ...,m}, a set of possible transitions (pairs (i, j) for which
pij > 0), and the values of all positive pij . It is then a sequence of random variables X0, X1, X2, ... that take
values in S and satisfy

P (Xn+1 = j | Xn = i,Xn−1 = in−1, ..., X0 = i0) = pij

for all possible sequences of states.

A Markov chain model can thus be entirely encoded by a transition probability matrix, i.e. a 2D array where
the pij is the element in the ith row and jth column. We can also visualize the model as a transition probability
graph, in which the nodes are the states and the edges are the possible transitions (weighted by the pij values).

If we have a Markov chain model, we can easily compute the probability of any sequence of states:

P (X0 = i0, X1 = i1, ..., Xn = in) = P (X0 = i0)pi0i1pi1i2 · · · pin−1in

We might also be interested in the n-step transition probability, i.e. the probability that the state after n time
steps will be j, given that the current state is i:

rij(n) = P (Xn = j | X0 = i)

This can be computed via the recursion of the Chapman-Kolmogorov equation:

rij(n) =

m∑
k=1

P (Xn−1 = k | X0 = i)P (Xn = j | Xn−1 = k,X0 = i)

=

m∑
k=1

rik(n− 1) · pkj

for n > 1 and all i, j, starting with rij(1) = pij .

In Markov chains, there is a variety of types of states and asymptotic occupancy behavior.
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7.2. Classification of States

A state j is accessible from state i if the n-step transition probability rij(n) is positive for some n (i.e. there is a
possibility of reaching j after some number of time periods). A state i is recurrent if for every j that is accessible
from i, i is also accessible from j. If a state is not recurrent, it is transient (i.e. one of the states accessible from i
does not permit the possibility of ever getting back to i).

If i is a recurrent state, then the set of states A(i) that are accessible from i make up a recurrent class. The states in
A(i) will all be accessible from each other, and no state outside of A(i) will be accessible from them. Mathematically,
if i is recurrent then A(i) = A(j) for all j ∈ A(i).

A Markov chain can be decomposed into one or more recurrent classes, potentially along with some transient states.
Note that at least one recurrent state will be accessible from every transient state.

If the initial state is transient, the state trajectory will contain an initial portion of transient states and a final portion
of recurrent states from the same class. Once the state ends up in a class of recurrent states, it will stay in that class
forever, and all states in the class will be visited an infinite number of times.

7.2.1. Periodicity

A recurrent class is periodic if its states can be grouped into d > 1 disjoint subsets S1, ..., Sd such that all transitions
from one subset lead to the next subset. In other words, if i ∈ Sk and pij > 0, then j ∈ S1 if k = d and j ∈ Sk+1 if
k = 1, ..., d− 1 (where j is the next state).

Given a periodic recurrent class, a positive time n, and a state i in the class, there must be at least one state j for
which rij(n) = 0. Conversely, if a class is aperiodic, there exists a time n such that rij(n) > 0 for all i, j in the class.

7.3. Steady-State Behavior

We’re often interested in long-term state occupancy behavior, i.e. the n-step transition probabilities rij(n) when n
is large. These probabilities may converge to steady-state values which are independent of the initial state. Such
limiting values, denoted by πj , are defined so that πj ≈ P (Xn = j) when n is large. πj is called the steady-state
probability of j. The convergence theorem is as follows:

Say we have a Markov chain with a single aperiodic recurrent class. Then the steady-state probabilities πj for each
state j have the following properties:

• For each j, we have limn→∞ rij(n) = πj for all i.

• πj is the unique solution to the equations πj =
∑m

k=1 πkpkj and 1 =
∑m

k=1 πk.

• πj = 0 for all transient states, and πj > 0 for all recurrent states.

The steady-state probabilities form a probability distribution, the stationary distribution, on the state space.
The following equations, which arise from the first part of the convergence theorem, are known as the balance
equations.

πj =

m∑
k=1

πkpkj for j = 1, ...,m

Steady-State Probabilities as Expected State Frequencies
For a Markov chain with a single aperiodic class, the steady-state probabilities πj satisfy

πj = lim
n→∞

vij(n)

n

where vij(n) is the expectation of the number of visits to state j within the first n transitions, starting from state i.
Hence πj is the long-term expected fraction of time that the state is equal to j.

3



Expected Frequency of a Particular Transition
Consider n transitions of a Markov chain with a single aperiodic class, starting from a given initial state. Let qjk(n)
be the expected number of such transitions that go from state j to state k. Then, irrespective of the initial state, we
have

lim
n→∞

qjk(n)

n
= πjpjk

By the frequency interpretation, the balance equation expresses the fact that the expected frequency πj of visits to
j is simply the sum of the expected frequencies πkpkj of transitions that lead to j.

7.4. Absorption Probabilities and Expected Time to Absorption

Let’s imagine every recurrent class as an amorphous blob that absorbs things and never lets them go. In this context,
a recurrent state k is absorbing and we have pkk = 1 and pkj = 0 for j 6= k. Once we’re in an absorbing state we’ll
never get out!

Now, choose an absorbing state s. We will call ai the probability that s is eventually reached, given that we start
from state i. We can determine ai by solving the linear equations as = 1, ai = 0 for all absorbing i 6= s, and
ai =

∑m
j=1 pijaj for transient i. (We assume that all states are either transient or absorbing.)

We call µi the expected time to absorption for state i (i.e. the expected number of transitions until we enter
a recurrent state). µi is defined as E[min{n ≥ 0 | Xn is recurrent} | X0 = i], i.e. the unique solution to the linear
equations µi = 0 (for recurrent states i) and µi = 1 +

∑m
j=1 pijµj (for transient states i). In other words, the time

to absorption from a transient state should be 1 plus the expected time to absorption starting from the next state.

We call ti the mean first passage time from state i to state s, i.e. the expected number of transitions to reach
s for the first time if we start from i. s should be a recurrent state. We can obtain this by solving the equations
ts = 0 and ti = 1 +

∑m
j=1 pijtj (for i 6= s).

Finally, we can compute the mean recurrence time of recurrence state s, i.e. t∗s the number of transitions up to
the first return to s, given that we start from s. This is given by t∗s = 1 +

∑m
j=1 psjtj . A translation: the time to

return to s is just 1 plus the expected time to reach s from the next state. The next state is j with probability psj .

The previous two paragraphs assume a Markov chain with only one recurrent class.

2 Lecture

Finite Markov Chains

Markov chains have the memoryless property:

P (Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, ..., X0 = x0) = P (Xn+1 = xn+1 | Xn = xn)

The past is independent of the future given the present. Formally, we have a finite set of states X = {1, 2, ..., k}, a
probability distribution on the state space π0, and the transition probabilities Pij (defined for all i, j ∈ X ). Note
that Pij (the ijth entry of our transition probability matrix) is equivalent to P (i, j).

We have P (X0 = i) = π0(i) for all i ∈ X . We also have P (Xn+1 = j | Xn = i,Xn−1 = in−1, ..., X0 = i0) = Pij .
(Time homogeneity : at any time, the probability that we’re going from i to j is the same.)

Because of the Markov property,

P (X0 = i,X1 = j,X2 = i2, X3 = i3, ..., Xn = in)

= P (X0 = i) · P (X1 = j | X0 = i) · P (X2 = i2 | X1 = j,X0 = i) · · ·P (Xn = in | Xn−1 = in−1, Xn−2 = in−2, ..., X0 = i)

= P (X0 = i) · P (X1 = j | X0 = i) · P (X2 = i2 | X1 = j) · · ·P (Xn = in | Xn−1 = in−1)

= π0(i) · Pij · Pj,i2 · · ·Pin−1,in
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Example: Prof. Ramchandran’s office hours. We will assume that there are three states: zero people in OH, one
person in OH, or two people in OH. Our state sequence is X0, X1, X2, X3, ... where Xi ∈ {S0, S1, S2} for i = 0, 1, ....
(Each Xi corresponds to a time.) We define the state transition matrix P as

P =

P00 P01 P02

P10 P11 P12

P20 P21 P22

 =

0.8 0.2 0
0 0.3 0.7

0.6 0.4 0


where the ijth entry is “from i to j.” Note that the rows sum to one; this is therefore called a row-stochastic matrix.
This formulation might help us answer many questions of interest, e.g. average number of students in office hours or
P (X10 = 2 | X0 = 0). However, we need a framework, and this is where Markov chains come in.

Note: we define (for example) π0(0) = P (X0 = 0) and π1(0) = P (X1 = 0). One question of interest: given π0, what
is πn? In row vector form, we have π0 =

[
π0(0) π0(1) π0(2)

]
and πn =

[
πn(0) πn(1) πn(2)

]
. Again, we also

define Pij as P (Si → Sj).

Irreducible and Aperiodic Markov Chains

A Markov chain is irreducible if we can go from any state to any other state, possibly in many steps. If a Markov
chain is irreducible, let d(i) = gcd(n ≥ 1 | Pn

ii > 0). Pn
ii is the probability that we go from state i to state i in n

steps. So this is the GCD of all of the ns greater than 1 for which Pn
ii > 0.

d(i) is the same (say d(i) = d) for all states i in an irreducible Markov chain. Periodic with period d means we can
only return in multiples of d, i.e. Pn

ii > 0 only when n is a multiple of d.

1 2 3

This is irreducible but not aperiodic. If we start at state 1 we can only
come back in 2 steps, 4 steps, 6 steps, etc.... i.e. d = 2, while aperiodicity
requires d = 1.

1 2 3
This is irreducible and aperiodic. We can go from any state to any
other state, and in this case d = 1 (because if we start at state 3, we
can come back in 1, 2, 3, ... steps and the GCD of this is 1).

1 2 3 This is not irreducible. Once we end up in state 3, we’re stuck; we
can’t go from state 3 to any other state.

Example: OH again. Let’s find πn, the distribution of Xn. We know that

πm+1(j) = P (Xm+1 = j)

=
∑
i

P (Xm = i)P (Xm+1 = j | Xm = i)

=
∑
i

πm(i)Pij

Hence πm+1(j) =
∑

i∈X πm(i)Pij for all j ∈ X .

With πm and πm+1 as row vectors, it must then be the case that πm+1 = πm · P . (Recall that P is the |X | × |X |
matrix of transitions from i to j.) Then π1 = π0P , π2 = π1P = π0P

2, and πn = π0P
n.

Balance Equations

Question: is there a starting state distribution π0 such that πm = π0 for all m? (In such a case, our probability of
being in a state will be exactly what we started with; we will never move away from the initial distribution.)

This kind of distribution π0 is called an invariant (stationary) distribution, and is defined formally via the rule
“π0 is invariant iff π0P = π0.” If π0 is invariant, the distribution of Xn is the same as the distribution of X0.
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When we have a stationary distribution, “FLOW IN” = “FLOW OUT” for all states in the Markov chain. Recall
that πm+1(j) =

∑
i∈X πm(i)Pij for all j ∈ X . The balance equations are∑

j

π(j)Pji = π(i)

i.e.
π(i)Pii +

∑
j 6=i

π(j)Pji = π(i)

Then
∑

j 6=i π(j)Pji = π(i)(1− Pii) = π(i)
∑

j 6=i Pij . In other words, the amount of probability flow coming into i is
equivalent to the amount of probability flow coming out of i.

The balance equation ∑
j 6=i

π(j)Pji = π(i)
∑
j 6=i

Pij

is simply saying “flow into state i” = “flow out of state i.” Flow conservation! By isolating each state and looking at
the flow going in and coming out, we can almost solve for the πi’s. The missing component is the equation

∑
i πi = 1

(the probabilities have to sum to one).

Big Theorem

If the Markov chain is finite and irreducible, then it has a unique invariant distribution. π(i) is the long-term fraction
of time that the chain spends in state i, i.e. that Xn is equal to i.

The long-term fraction of time that Xn is equal to i is

lim
n→∞

[
1

N

N−1∑
i=0

1{Xn = i}

]

Intuitively, this is the fraction of time we’re spending in a certain state (simply a counter over all time steps).

Furthermore, if the Markov chain is irreducible and aperiodic, then the distribution πn converges to π as n→∞.
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