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1 Lecture

CLT

We have a sum of i.i.d. random variables Sn =
∑n

i=1Xi, and we want to know the distribution of Sn. If we don’t
normalize, the variance will blow up. Therefore we should normalize:

Zn =
Sn − nµ√

nσ2

Zn will then have zero mean and variance one. The CLT characterizes the distribution of Zn, and says that

lim
n→∞

P (Zn ≤ x) = Φ(x) for every x

where Φ(x) is the CDF of the standard normal distribution.

The implications are as follows:

• The distribution of Sn (and Zn, which is just a normalized version of Sn) will “wipe out” all the information
about the Xis except for µ and σ2. The mean and the variance are the only significant pieces of information.

• If there is a large number of independent small factors, the aggregate of these factors will be normally dis-
tributed. Therefore, this kind of setup is used to model noise.

Proof. First, an aside: if Y ∼ N (0, 1), its MGF MY (s) = E[esY ] = es
2/2.

We have that X1, ..., Xn are i.i.d. with mean 0 and variance 1 (without loss of generality, because we can always
normalize). Let MX(s) = E[esX ] be the MGF of each Xi, and let Z be (X1 + ... + Xn)/

√
n (we divide by

√
n in

order to ensure that the variance is 1). Hence E[Z] = 0 and var(Z) = 1.

Let’s find the MGF of Z.

MZ(s) = E[esZ ] = E[e
s 1√

n
(X1+...+Xn)]

= E[e(sX1)/
√
n] · · ·E[e(sXn)/

√
n]

= E[e(sX)/
√
n]n

= [MX(s/
√
n)]n

Recall: the Taylor series of f(x) is

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)(x− a)2

2!
+
f ′′′(a)(x− a)3

3!
+ ...

so MX(s) = MX(0) +M ′
X(0)s+M ′′

X(0) s2

2 +M ′′′
X (0) s3

6 + ... = 1 + s2

2 + E[X3]s3

6 + ....

This gives us

MZ(s) =

[
MX

(
s√
n

)]n
=

(
1 +

s2

2n
+

E[X3]s3

6n3/2
+ ...

)n
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If we send n to ∞, we see

lim
n→∞

MZ(s) = lim
n→∞

(
1 +

s2

2n
+O

(
1

n

))n

= es
2/2

Since this is the same as the MGF of the standard normal, Z must be ∼ N (0, 1). Q.E.D.!

Information Theory
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A more detailed diagram of a communication channel.

A channel has an input and an output; in the context of information theory, these both correspond to a message.
(We’re trying to send information over a communication channel.) Shannon showed that even in the presence of
noise we can send things reliably over a channel. At the time, people didn’t think we could send anything reliably
over a channel if there was noise.

Example. We want to transmit an English novel error-free over a wireless channel. How quickly can we do this? The
novel is 500, 000 characters, and the wireless channel has 10 MHz bandwidth with a SNR of 30 dB.

Shannon gives us that each character can be described on average with 2.6 bits (assuming an i.i.d. model). Our
wireless channel has a capacity of 100 Mbps (we arrive at this result via a certain formula). Therefore, the novel can
be sent in (2.6 · 500, 000)/108 ≈ 13 ms.

Binary Erasure Channel

Let’s study the capacity of the BEC (binary erasure channel). In a BEC, either the data comes through or it gets
clobbered (with probability p). It turns out the capacity of the BEC is C = 1− p bits per channel use.

The binary erasure channel.
Source: EE 126 HW2.
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We call X the input alphabet and Y the output alphabet, where X = {0, 1} and Y = {0, 1, ∗}. We would like an
encoder to take a batch of L bits and encode them into a message of n bits: fn : XL 7→ Xn (n > L). The decoder
should be a function that maps the encoded message to the original input: gn : yn 7→ XL.

Call the input X(n) = (X1, ..., Xn) the input bits to the channel, and Y (n) = (Y1, ..., Yn) the output symbols from the

channel. We would like to determine the maximum probability of error P
(n)
e = maxm∈XL P (gn(Y (n) 6= m | X(n) = fn(m)),

and then minimize this.

Shannon says that it’s possible to send reliably over the BEC at a rate of (1−p) bits per channel usage. For example,
when p = 0.5, we can send at a rate of 0.5 bits.

The claim is that CBEC ≤ (1− p) bits / channel use for all possible schemes. Suppose we have feedback:

ENC (channel) DEC

feedback

In this case, we have a genie telling us whether we’ve sent the correct bit, and on average we take 1/(1− p) bits to
send the correct one. Therefore, the rate is 1 − p. And if we can’t do better than 1 − p with a genie, we “sure as
hell” can’t do better than that without a genie (real-world situation).
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