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1 Reading

5.2. The Weak Law of Large Numbers

The weak law of large numbers asserts that the sample mean of a large number of i.i.d. random variables is very
close to the true mean, with high probability. If X1, ..., Xn is a sequence of i.i.d. random variables with mean µ and
variance σ2, then the sample mean is

Mn =
X1 + ...+Xn

n
the expectation of the sample mean is

E[Mn] =
E[X1] + ...+ E[Xn]

n
=
nµ

n
= µ

and the variance of the sample mean is

var(Mn) =
var(X1 + ...+Xn)

n2
=
var(X1) + ...+ var(Xn)

n2
=
nσ2

n2
=
σ2

n

Applying the Chebyshev inequality, we have

P (|Mn − µ| ≥ ε) ≤
σ2

nε2
for any ε > 0

As n increases, the Chebyshev bound goes to 0! As a consequence, we obtain the formal WLLN:

The Weak Law of Large Numbers
Let X1, ..., Xn be i.i.d. random variables with mean µ. For every ε > 0, we have

P (|Mn − µ| ≥ ε) = P

(∣∣∣∣X1 + ...+Xn

n
− µ

∣∣∣∣ ≥ ε)→ 0 as n→∞

The WLLN suggests that for large n, the bulk of the distribution of Mn is concentrated near µ.
Essentially, the sample mean should converge to the true mean.

5.3. Convergence in Probability

Convergence of a Deterministic Sequence
Let a1, ..., an be a sequence of real numbers, and let a be another real number. We say that the sequence an converges
to a, or limn→∞ an = a, if for every ε > 0 there exists some n0 such that

|an − a| ≤ ε for all n ≥ n0

Convergence in Probability
Let Y1, ..., Yn be a sequence of random variables (not necessarily independent), and let a be a real number. We say
that the sequence Yn converges to a in probability if, for every ε > 0, we have

lim
n→∞

P (|Yn − a| ≥ ε) = 0
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In other words, for every ε > 0 and every δ > 0, there exists some n0 such that

P (|Yn − a| ≥ ε) ≤ δ for all n ≥ n0
If we call ε the “accuracy” level and δ the “confidence” level, then Yn can be equal to a within any level of accuracy
and confidence – provided n is large enough.

Even if a sequence Yn converges to a, E[Yn] might not converge to a!

5.4. The Central Limit Theorem

Let X1, ..., Xn be a sequence of i.i.d. random variables with mean µ and variance σ2. We define

Zn =
Sn − nµ
σ
√
n

=
X1 + ...+Xn − nµ

σ
√
n

We can see that

E[Zn] =
E[X1 + ...+Xn]− nµ

σ
√
n

= 0

and

var(Zn) =
var(X1 + ...+Xn)

σ2n
=
var(X1) + ...+ var(Xn)

σ2n
=
nσ2

nσ2
= 1

which brings us to the central limit theorem:

The Central Limit Theorem
Let X1, ..., Xn be a sequence of i.i.d. random variables with common mean µ and variance σ2, and define

Zn =
X1 + ...+Xn − nµ

σ
√
n

Then the CDF of Zn converges to the standard normal CDF

Φ(z) =
1√
2π

∫ z

−∞
e−x

2/2dx

in the sense that
lim
n→∞

P (Zn ≤ z) = Φ(z) for every z

In other words, the sum of a large number of independent random variables is approximately normal. The central
limit theorem allows us to calculate probabilities related to Zn as if Zn were normal. Note that this is equivalent to
treating Sn as a normal random variable with mean nµ and variance nσ2.

Normal Approximation Based on the Central Limit Theorem
Let Sn = X1 + ... + Xn, where the Xi are i.i.d. random variables with mean µ and variance σ2. If n is large, the
probability P (Sn ≤ c) can be approximated by treating Sn as if it were normal, as per the procedure

1. Calculate the mean nµ and the variance nσ2 of Sn.

2. Calculate the normalized value z = (c− nµ)/
√
nσ2.

3. Use the approximation P (Sn ≤ c) ≈ Φ(z), where Φ(z) is available from standard normal CDF tables.

5.4.1. De Moivre-Laplace Approximation to the Binomial

Recall: a binomial random variable Sn with parameters n and p can be viewed as the sum of n independent Bernoulli
variables X1, ..., Xn with common parameter p:

Sn = X1 + ...+Xn
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where µ = E[Xi] = p and σ =
√
var(Xi) =

√
p(1− p).

We can use the CLT to provide an approximation for P ({k ≤ Sn ≤ l}), where k and l are given integers. We express
this event as a standardized random variable:

k ≤ Sn ≤ l ⇐⇒
k − np√
np(1− p)

≤ Sn − np√
np(1− p)

≤ l − np√
np(1− p)

By the central limit theorem, (Sn − np)/
√
np(1− p) has (approximately) a standard normal distribution. Hence

P (k ≤ Sn ≤ l) = P

(
k − np√
np(1− p)

≤ Sn − np√
np(1− p)

≤ l − np√
np(1− p)

)

≈ Φ

(
l − np√
np(1− p)

)
− Φ

(
k − np√
np(1− p)

)

Essentially we’re treating Sn as a normal random variable with mean np and variance np(1 − p). Notably, a more
accurate approximation can be obtained if we replace k with k− 1/2 and l with l+ 1/2. This gives us the following:

De Moivre-Laplace Approximation to the Binomial
If Sn is a binomial random variable with parameters n and p, n is large, and k, l are nonnegative integers, then

P (k ≤ Sn ≤ l) ≈ Φ

(
l + 1

2 − np√
np(1− p)

)
− Φ

(
k − 1

2 − np√
np(1− p)

)

The quality of the above approximation is best when p is close to 0.5, and worse when p is close to 0 or 1. (When p
is close to 0 or 1, a larger value of n will be needed to maintain the same accuracy.)

5.5. The Strong Law of Large Numbers

The SLLN also deals with the convergence of the sample mean to the true mean.

The Strong Law of Large Numbers
Let X1, X2, ... be a sequence of i.i.d. random variables with mean µ. Then the sequence of sample means Mn =
(X1 + ...+Xn)/n converges to µ with probability 1, i.e.

P

(
lim
n→∞

X1 + ...+Xn

n
= µ

)
= 1

By the strong law: for any given ε > 0 the probability that the difference |Mn − µ| will exceed ε an infinite number
of times is equal to 0. With the weak law, it is possible that Mn deviates significantly from µ every once in a while.

The strong law asserts that Mn converges to µ with probability 1. The weak law asserts that Mn converges to µ in
probability.

Convergence with Probability 1
Let Y1, Y2, ... be a sequence of random variables (not necessarily independent). We say that Yn converges to c with
probability 1 (or almost surely) if

P
(

lim
n→∞

Yn = c
)

= 1

Convergence with probability 1 implies convergence in probability, but the converse is not necessarily true.
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W2.3. Laws of Large Numbers for i.i.d. Random Variables

If Xn and X are random variables defined on a common probability space, Xn converges in probability to X if
for all ε > 0 we have

P (|Xn −X| ≥ ε)→ 0 as n→∞

The notation for “converges in probability” is Xn
p−→ X.

Meanwhile, Xn converges almost surely to X as n→∞ if

P
(

lim
n→∞

Xn(ω) = X(ω)
)

= 1

The notation for “converges almost surely” is Xn → X.

“Almost sure” convergence implies “convergence in probability,” so the SLLN is stronger than the WLLN. By these
laws of large numbers, the sample mean values Yn = (X0 + ... + Xn−1)/n converge to the expected value with
probability 1.

Modes of Convergence

When working with sequences of real numbers, the definition of convergence is easy. A sequence of real numbers
(an)n∈N is said to converge to a limit, i.e. an −−−−→

n→∞
a, if for every ε > 0 there exists a positive integer N such that

the sequence after N is always within ε of the supposed limit a.

On the other hand, the notion of convergence becomes more subtle as we discuss functions (e.g. random variables)
instead of numbers. We will examine the modes of convergence for a fixed probability space Ω, sequence of random
variables (Xn)n∈N, and other random variable X.

Almost Sure Convergence

The sequence (Xn)n∈N converges almost surely (/with probability one) to X if the set of outcomes ω ∈ Ω for which
Xn(ω) −−−−→

n→∞
X(ω) forms an event of probability one.

The SLLN states that the sample average of i.i.d. random variables converges a.s. to the expected value of their
common distribution.

For example, in SGD from ML we want to know whether iterates converge a.s. to the true minimizer of the function.

Convergence in Probability

The sequence (Xn)n∈N converges in probability to X if, for every ε > 0, P (|Xn −X| > ε)
n→∞−−−−→ 0. In other words,

for any fixed ε > 0, the probability that the sequence deviates from the supposed limit X by more than ε becomes
vanishingly small.

Convergence in Distribution

Xn
d−−−−→

n→∞
X if, for every x ∈ R such that P (X = x) = 0, we have P (Xn ≤ x) −−−−→

n→∞
P (X ≤ x). This does not

require all of the random variables to be defined on the same probability space.

Convergence in probability implies convergence in distribution! However, convergence in distribution does not imply
convergence in probability.

The CLT is a statement about convergence in distribution (specifically to the standard normal distribution).

Note: for none of the modes of convergence mentioned thus far is it implied that E[Xn]→ E[X] as n→∞. On the
other hand, for all of the modes of convergence mentioned thus far, it’s the case that if Xn converges in some way
to X, then f(Xn) converges in the same way to f(X) [where f is a continuous function].
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2 Lecture

Recap

The Chernoff bound asserts that
P (Y ≥ b) ≤ min

s
(e−sb E[esY ])

Note that E[esY ] = MY (s).

The MGF of the standard normal X ∼ N (0, 1) is MX(s) = e−s
2/2. From Chernoff, we have P (X ≥ b) ≤ e−b2/2.

Weak Law of Large Numbers

WLLN: If X1, ..., Xn are i.i.d. random variables with mean µ and finite variance σ2, then

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε
)
→ 0 as n→∞

where 1
n

∑n
i=1Xi is the empirical mean Mn. Formally, for any ε, δ > 0 (arbitrarily small, but positive), there exists

an n(ε, δ) such that P (|Mn − µ| ≥ ε) < δ for all n > n(ε, δ).

ε captures “accuracy” level. δ captures “confidence” level. n(ε, δ) is a threshold value for target accuracy and
confidence level.

Note that E[Mn] = µ, while var(Mn) = 1
n2nσ

2 = σ2

n . The Chebyshev inequality tells us

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε
)
≤ σ2

nε2
→ 0 as n→∞

Hence Chebyshev is a proof for the weak law of large numbers.

In layman’s terms: if we compute Mn for large enough n, then almost always |Mn − µ| ≤ ε. We say Mn converges
in probability to µ. (Mn → µ.)

Example. X1, ..., Xn are i.i.d. Uniform[−1, 1]. If Yn = Xn/n, does Yn converge in probability? To what?

Yn should converge in probability to 0, since Xn is something between −1 and 1 while n will only get larger and
larger. Working it out, we have

Yn ≤ y =⇒ Xn ≤ ny
Fn(y) = FX(ny) =⇒ fYn

(y) = nfXn
(ny)

Then P (|Yn − 0| > ε) = 0 if 1
n < ε, or n > 1

ε .

Example. If X1, ..., Xn are i.i.d. Uniform[0, 1] and Yn = min (X1, ..., Xn), then

P (|Yn − 0| > ε) = P (X1 > ε) · · ·P (Xn > ε)

= (1− ε)n → 0 as n→∞

Example. Suppose time is discrete (1, 2, 3, ...) and Yn =

{
1 if arrival at time n

0 otherwise

Define IK = {2k, 2k + 1, ..., 2k+1 − 1}, k = 0, 1, .... The first interval I0 includes time 1. The second interval I1
includes times 2 and 3. The third interval I2 includes times 4, 5, 6, 7... essentially, we are doubling the size of our
intervals as we go along.

Our arrival process is such that we will have one arrival in every interval (at any time within the interval). Formally,
we will suppose there is exactly one arrival in each interval IK and it is equally likely to be at any time within each
interval.
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As a sanity check, we have

• P (Y1 = 1) = 1

• P (Y2 = 1) = P (Y3 = 1) = 0.5

• P (Y4 = 1) = P (Y5 = 1) = P (Y6 = 1) = P (Y7 = 1) = 0.25

What is the probability that Yn = 1 if Yn is in the kth interval? i.e. what is P (Yn = 1) if n ∈ Ik? As it happens,
P (Yn = 1) = 1/2k if n ∈ Ik. But now

lim
n→∞

P (Yn = 1) = lim
k→∞

1

2k
= 0

Supposedly Yn is converging to 0.

Given any finite (but also large) n, there is certain to be an infinite number of arrivals after n. And yet we are
supposedly converging to 0 in some sense! Since it doesn’t really converge, that sense must therefore be weak. This
is the weakness of the weak law.

Strong Law of Large Numbers

Let {Xn, n ≥ 0} be a sequence of random variables with mean µ. Then

1

n

n∑
i=1

Xi → µ as n→∞ with probability 1

...i.e. the sample mean converges to the expected value µ with probability 1.

P

(
lim
n→∞

1

n

n∑
i=1

Xi = µ

)
= 1

Yn
almost surely−−−−−−−−→ µ

The WLLN says that the fraction of the excursions outside (µ− ε, µ+ ε) converges to 0. The SLLN says that every
realization of the sample mean converges to µ.

Central Limit Theorem

Let Sn = X1 + ... + Xn, where the Xi’s are i.i.d. and drawn from Uniform[0, 1]. We want to know the distribution
of Sn. As n gets larger, the distribution of Sn will become smoother and more spread out; notably, it will look
increasingly bell-shaped. The same is also true if X is drawn from Exp(1) instead of Uniform[0, 1].

As n gets large, the mean and variance of Sn converge to ∞. Therefore we need to normalize! We will define

Zn =
Sn − nµ√

nσ

where nµ is the mean of Sn and nσ2 is the variance. Zn will have a mean of zero and a variance of one.

The CLT says (amazingly!) that

lim
n→∞

P (Zn ≤ x) = Φ(x) for every x

where Φ(x) = 1√
2π

∫ x
−∞ e−t

2/2dt, i.e. the CDF of N (0, 1).

In other words, Zn
converges in distribution−−−−−−−−−−−−−−−→ N (0, 1).
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