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1 Reading

5.1. Markov and Chebyshev Inequalities

These inequalities use the mean and possibly the variance of a random variable in order to draw conclusions about
the probabilities of certain events. They are useful for cases when the mean and/or variance are easily computable,
but the distribution is not.

The Markov inequality asserts that if a nonnegative random variable has a small mean, then the probability that
it takes a large value must also be small.

Markov Inequality
If a random variable X can only take nonnegative values, then

P (X ≥ a) ≤ E[X]

a
for all a > 0

This can be seen by defining a random variable Ya over a fixed positive number a:

Ya =

{
0 if X < a

a if X ≥ a

Then
E[X] ≥ E[Ya] = aP (Ya = a) = aP (x ≥ a)

However, the bounds provided by the Markov inequality can be rather loose. We continue with the Chebyshev
inequality, which states that if a random variable has a small variance, then the probability that it takes a value
far from its mean is also small.

Chebyshev Inequality
If X is a random variable with mean µ and variance σ2, then

P (|X − µ| ≥ c) ≤ σ2

c2
for all c > 0

This can be seen by applying the Markov inequality to the nonnegative random variable (X − µ)2 with a = c2:

P ((X − µ)2 ≥ c2) ≤ E[(X − µ)2]

c2
=
σ2

c2

and also noting that the event (X − µ)2 ≥ c2 is identical to the event |X − µ| ≥ c.
An alternative form of the Chebyshev inequality is obtained by letting c = kσ, where k is positive, which yields

P (|X − µ| ≥ kσ) ≤ σ2

k2σ2
=

1

k2

Hence the probability that a random variable takes a value more than k standard deviations away from its mean is
at most 1/k2.
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W13.7. Bounds on Probabilities

Chernoff’s inequality states that P (X ≥ a) ≤ E[eθ(X−a)] for all θ > 0. Jensen’s inequality states that
f(E[X]) ≤ E[f(X)] for all f(·) that are convex.

2 Lecture

Recap: MGFs

MX(s) = E[esX ] =

{∑
k e

skP (X = k) for discrete X∫∞
−∞ esxfX(x)dx for continuous X

We then have
dn

dsn
MX(s)

∣∣∣
s=0

= E[Xn]

• If X ∼ Exp(λ) =⇒ fX(x) = λe−λx;x ≥ 0, then its MGF is MX(s) = λ
λ−s for s < λ.

• If X ∼ Poisson(λ) =⇒ P (X = k) = e−λ λ
k

k! ; k = 0, 1, ..., then its MGF is MX(s) = e−λ+λe
s

.

• If X ∼ N (0, 1), then its MGF is MX(s) = es
2/2. If Y ∼ N (µ, σ2), then its MGF is MY (s) = esµ+s

2σ2/2.

If Y = aX + b, then MY (s) = esbMX(sa).

If Y = X1 +X2 + ...+Xn, where the Xi’s are i.i.d., then

MY (s) =

n∏
i=1

MXi(s) = [MX(s)]n

If we want to find fY (y) where Y = X1 +X2 (and X1 and X2 are independent), then

• fX1(x)
T−→MX1(s)

• fX2
(x)

T−→MX2
(s)

• MX1
(s) ·MX2

(s) = MY (s)

• MY (s)
T−1

−−−→ fY (y)

This is the prescription for doing convolution, not only in probability, but also in other fields such as signal processing!

Example: convolving two Gaussians. Let X1 ∼ N (0, 1) and X2 ∼ N (0, 1). Let X1 and X2 be independent. Then

Y = X1 +X2

MX1
(s) = es

2/2

MX2
(s) = es

2/2

MY (s) = es
2

from which we realize that Y ∼ N (0, 2).
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In general, if X1 ∼ N (µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2), X1 and X2 are independent, and Y = X1 +X2, then

MX1
(s) = es

2σ2
1/2+µ1s

MX2
(s) = es

2σ2
2/2+µ2s

MY (s) = es
2(σ2

1+σ
2
2)/2+(µ1+µ2)s

and
Y ∼ N (µ1 + µ2, σ

2
1 + σ2

2)

Bounds and Limits

We are interested in studying the limit behavior of a sequence of random variables, what the sequence converges to,
and at what “rate?” We will start with the most elementary bound: the Markov bound.

Markov

The Markov bound asserts that if X is a nonnegative random variable, then

P (X ≥ a) ≤ E[X]

a

Proof.

{1}X≥a ≤
X

a

Note that {1} is an indicator function. It is 1 when X ≥ a, and 0 otherwise. Taking the expectation EX(·) of both
sides, we see

P (X ≥ a) ≤ E[X]

a

We can also prove the Markov bound pictorially, and by using the tail sum formula.

Example. X is the height of a random adult in Berkeley. We know that E[X] = 68 inches. Then Markov says that
P (X > 144 in) < 68

144 = 0.47. This is a rather bad bound, but to be fair Markov doesn’t use much information –
only the mean!

Markov is mostly only useful as a building block.

Example: flipping a fair coin across i.i.d. trials. Let X = X1 +X2 + ...+Xn, and let

Xi =

{
1 if toss i is heads

0 otherwise

Then E[X] = n 1
2 = n/2, meaning that if n = 1000, P (X > 900) ≤ 500

900 = 5/9. Once again there is a really big gap
between Markov and what the upper bound could be.

Example. Let X ∼ Exp(1). Thus P (X > x) = e−x;x > 0, and Markov tells us that

P (X > x) ≤ 1

x

As a summary of Markov:

• It is a weak inequality

• It uses only the mean of the distribution

• When we only know the mean, perhaps it’s the best we can do. But if we know more, we should use something
else
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Chebyshev

Chebyshev builds on Markov by taking the square function. If X is a random variable with finite mean and variance
σ2, Chebyshev says that

P (|X − E[X]| ≥ c) ≤ σ2

c2
∀ c > 0

As a special case,

P (|X − E[X]| ≥ kσ) ≤ 1

k2
∀ k > 0

Proof.
P (|X − E[X]| ≥ c) = P (|X − E[X]|2 ≥ c2) ≤ E[|X − E[X]|2]/c2 = σ2/c2

Example: adult height in Berkeley. We have E[X] = 68 in, and σ2
X = 49in2. Chebyshev tells us that

P (X ≥ 144in) ≤ P (|X − 68| ≥ 76) ≤ 49

762
= 0.0084

which is better than Markov!

Example: random walk. A drunk guy starts from a bar. Wherever he is, he flips a coin and either goes left by one step
or right by one step. We want to know the value of P (after n = 10000 steps, drunk is more than 400 steps from the bar).

We can compute a bound on it as follows: X =
∑n
i=1Xi, so E[Xi] = 0 and var(Xi) = E[X2

i ] = 1. Thus E[X] = 0
and var(X) = n. Chebyshev tells us that

P (|X| > k
√
n) ≤ n

k2n
=

1

k2

meaning P (greater than 400 steps away) < 1
16 . This is still not that great of a bound.

Example. Let X ∼ N (0, 1). What is the probability we’re three standard deviations away from the mean? Chebyshev
gives us P (|X| > 3) ≤ 1/9 = 0.111, but this is at least ten times worse than what it actually is (≈ 0.001).

The problem with our bounds so far is that they’re only using one or two moments. We should use all the moments!
This is where moment-generating functions come in.

Chernoff

The Chernoff bound also builds on Markov. P (X ≥ a) ≤ E[X]/a for a > 0, but we can pick any (X, a) we want!
Let’s pick X = esY and a = esb. This gives us

P (esY ≥ esb) ≤ E[esY ]/esb = MY (s) · e−sb

Chernoff picks the best s in the best way and gets the best bound.

• For s ≥ 0, P (Y ≥ b) (the upper tail) = P (esY ≥ esb) ≤ e−sbMY (s).

• For s < 0, P (Y ≤ b) (the lower tail) = P (esY ≥ esb) ≤ e−sbMY (s).

Note that the left-hand side is not a function of s, but the right-hand side is! We can optimize over s to get the
tightest bound.

The Chernoff bound is about as powerful as it gets. Qualitatively, it’s better because MY (s) basically contains all
of the information about the distribution. We’re using not just the mean, not just the variance, but all of the more
subtle characteristics captured by the MGF.

P (Y ≥ b) ≤ e−sbMY (s) = e−sbelnMY (s) = e−(sb−lnMY (s))
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The best bound is found by maximizing the exponent!

Example. Let Y ∼ N (0, 1) =⇒ MY (s) = es
2

/2. Then maxs≥0(sb − s2/2) is at s = b. Trying it out, we have

P (Y ≥ b) ≤ e−b2/2.

Example. With Chebyshev, P (|N (0, 1)| > 3) ≤ 1/9 ≈ 0.111. With Chernoff, this becomes P (|N (0, 1)| > 3) ≤
e−4.5 ≈ 0.0111.

References

[1] D.P. Bertsekas and J.N. Tsitsiklis. Introduction to Probability. Athena Scientific books. Athena Scientific, 2002.

[2] Jean Walrand. Probability in Electrical Engineering and Computer Science: An Application-Driven Course. Quo-
rum Books, Westport, CT, USA, 2014.

5


	Reading
	Lecture

