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1 Reading

4.3. Conditional Expectation and Variance Revisited

Law of Iterated Expectations
E[E[X | Y ]] = E[X]

Law of Total Variance
var(X) = E[var(X | Y )] + var(E[X | Y ])

• E[X | Y = y] can be viewed as an estimate of X given Y = y. It is thus a number whose value depends on y.

• E[X | Y ] is a function of the random variable Y and hence a random variable itself. Its value is E[X | Y = y]
whenever the value of Y is y.

• var(X | Y ) is a random variable whose value is var(X | Y = y) whenever the value of Y is y.

4.4. Transforms

The transform (or moment-generating function) associated with a random variable X is a function MX(s) of
a scalar parameter s, defined by

MX(s) = E[esX ]

When X is a discrete random variable,

MX(s) =
∑
x

esxpX(x)

When X is a continuous random variable,

MX(s) =

∫ ∞
−∞

esxfX(x)dx

Example. If X is a Poisson random variable with parameter λ, then its transform is

MX(s) =

∞∑
x=0

esx
λxe−λ

x!

If we let a = esλ, we obtain

MX(s) = e−λ
∞∑
x=0

ax

x!
= e−λea = ea−λ = eλ(e

s−1)

Importantly, the transform is not a number but a function of a parameter s. Also, it is only defined for the values
of s for which E[esX ] is finite. Note that the distribution of a random variable is completely determined by the
corresponding transform!

If Y = aX + b, then MY (s) = esbMX(sa).
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4.4.1. From Transforms to Moments

Once a random variable’s transform is available, its moments are easily computed. This is because

dn

dsn
M(s)

∣∣∣
s=0

=

∫ ∞
−∞

xnfX(x)dx = E[Xn]

Also, MX(0) = E[e0] = E[1] = 1.

4.4.2. Inversion of Transforms

The transform MX(s) is invertible, i.e. it can be used to determine the probability law of the random variable X.

Inversion Property
The transform MX(s) associated with a random variable X uniquely determines the CDF of X, assuming that
MX(s) is finite for all s in some interval [−a, a], where a is a positive number.

In practice, transforms are usually inverted by “pattern matching,” based on tables of known distribution-transform
pairs.

4.4.3. Sums of Independent Random Variables

Transform methods are especially convenient when dealing with a sum of random variables. This is because addition
of independent random variables corresponds to multiplication of transforms (providing a nice alternative to the
convolution formula).

Let X and Y be independent random variables, and let Z = X + Y . The transform associated with Z is

MZ(s) = E[esZ ] = E[es(X+Y )] = E[esXesY ] = E[esX ]E[esY ] = MX(s)MY (s)

By the same argument, if X1, ..., Xn is a collection of independent random variables and Z = X1 + ...+Xn, then

MZ(s) = MX1
(s) · · ·MXn(s)

4.5. Sum of a Random Number of Independent Random Variables

In this section, we consider the sum Y = X1 + ...+XN , where N is a random variable that takes nonnegative integer
values and X1, X2, ... are identically distributed random variables. We assume that N,X1, X2, ... are independent.
Let E[X], var(X), and MX(s) denote the common mean, variance, and transform of each Xi.

We will first condition on the event {N = n}. The random variable X1 + ...+Xn is independent of N and therefore
independent of {N = n}. Hence

E[Y | N = n] = E[X1 + ...+XN | N = n]

= E[X1 + ...+Xn | N = n]

= E[X1 + ...+Xn]

= nE[X]

This is true for every nonnegative integer n, so E[Y | N ] = NE[X].

According to the law of iterated expectations, we obtain E[Y ] = E[E[Y | N ]] = E[NE[X]] = E[N ]E[X]. Similarly,
var(Y ) = E[N ]var(X) + (E[X])2var(N) and MY (s) =

∑∞
n=0(MX(s))npN (n).
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2 Lecture

Convolution

Let X and Y be independent random variables. Let Z = X + Y . In the discrete case, given the PMFs of X and Y
we would like to find the PMF of Z. In the continuous case, given the PDFs of X and Y we would like to find the
PDF of Z.

First we will tackle the discrete case:

P (Z = z) =
∑

x,y | x+y=z

(X = x, Y = y)

=
∑
x

P (X = x, Y = z − x)

=
∑
x

P (X = x)P (Y = z − x)

(That’s it – that’s the convolution formula!) Convolution is a spreading operation, and encodes a process of increasing
randomness.

We will now address the continuous case:

fZ(z ∈ {z, z + δ}) = fZ(z) · δ

=

∫ ∞
−∞

∫ z+δ−x

y=z−x
fX,Y (x, y)dy dx

=

∫ ∞
−∞

fX(x)

∫ z+δ−x

z−x
fY (y)dy dx

=

∫ ∞
−∞

fX(x)fY (z − x)dx

which implies

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx =

∫ ∞
−∞

fY (y)fX(z − y)dx = (fX ∗ fY )(z)

As an exercise, we should try convolving fX(x) ∼ N (0, 1) with fY (y) ∼ N (0, 1). The convolution of a Gaussian with
a Gaussian should equal a fatter Gaussian, i.e. N (0, 2).

Moment-Generating Functions (Transforms)

We have

esX = 1 + sX +
s2X2

2!
+
s3X3

3!
+ ...

where X is a random variable, s is a scalar parameter, and the whole thing is a function.

We can then define the moment-generating function (MGF)

E[esX ] = 1 + sE[X] +
s2

2!
E[X2] +

s3

3!
E[X3] + ...

Note that all moments are simultaneously present at the same time; this is a very rich description of a random
variable. To get 1 we can set s to 0. To get E[X], we can differentiate and then set s to 0. To get E[X2], we can
differentiate twice and then set s to 0.
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As an illustration of this, we have

• d
dsE[esX ] = E[X] + sE[X2] + s2

2!E[X3] + ...

• d2

ds2E[esX ] = E[X2] + sE[X3] + ...

• dn

dsnE[esX ] = E[Xn] + s(other larger moments of X)

which gives rise to

• d
dsE[esX ]

∣∣∣
s=0

= E[X]

• d2

ds2E[esX ]
∣∣∣
s=0

= E[X2]

• dn

dsnE[esX ]
∣∣∣
s=0

= E[Xn]

Again, MX(s) = E[esX ] is formally known as the MGF (transform) of X. Its selling points are as follows:

• It makes it much easier to find the moments of X (differentiate instead of integrate).

• Convolutions become multiplications of transforms. So if we want to convolve two PDFs, it turns out that if
we take the transforms (MGFs) of those two random variables then we just need to multiply them. Then we
can invert the result and go back. We would rather do multiplications than convolutions (or we should)!

• The MGF is a very useful analytical tool. The proof of the central limit theorem essentially becomes a one-liner
because of this.

The key takeaways are that

MX(s) = E[esX ]

and
dn

dsn
MX(s)

∣∣∣
s=0

= E[Xn]

Also, the MGF has the properties

• MX(0) = 1

• If Y = aX + b, then MY (s) = E[es(aX+b)] = esbE[esaX ] = esbMX(as)

Example: a discrete case. Let X ∼ Poisson(λ) =⇒ P (X = k) = e−λ

k! λ
k for k = 0, 1, .... Then

MX(s) = E[esx] =

∞∑
K=0

esk
e−λλk

k!
= e−λ

∞∑
k=0

(λes)k

k!
= e−λ+λe

s

which means that

E[X] =
dMX(s)

ds

∣∣∣
s=0

= e−λeλe
s

λes
∣∣∣
s=0

= λ

and

E[X2] =
d2MX(s)

ds2

∣∣∣
s=0

= ... = λ2 + λ
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Example: a continuous case. Let X ∼ N (0, 1) =⇒ fX(x) = 1√
2π
e−x

2/2. Then

MX(s) =
1√
2π

∫ ∞
−∞

e−x
2/2esxdx

=
es

2/2

√
2π

∫ ∞
−∞

exp

{
− (x2 − 2sx+ s2)

2

}
dx

= es
2/2 1√

2π

∫ ∞
−∞

e−(x−s)
2/2dx

= es
2/2 · 1

= es
2/2

Note: if Y = µ+ σX, then MY (s) = esµMX(sσ) = esµes
2σ2/2. Hence

N (µ, σ2) =⇒ MY (s) = esµ+s
2σ2/2

One thing that is somewhat surprising is that a given transform corresponds to a unique CDF. In other words, there
is a one-to-one mapping between the MGF and the PDF. (MX(s) is called the bilateral Laplace transform of FX(x).)

Inversions are done by “pattern matching,” i.e. “aha! I know the guy whose MGF is that.”
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