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1 Reading

4.1. Derived Distributions

Given the PDF of X, we are interested in calculating the PDF of Y = ¢(X). To do so, we should first calculate the
CDF Fy of Y using the formula

Fww=Pmav<m:A(K}hme

Then we can differentiate to obtain the PDF of Y:

d

fy(y) = @Fy(y)

As a special case, if Y = aX + b then we can calculate its PDF as

fry) = ifX (y — b)

lal a
4.1.1. Sum of Independent Random Variables — Convolution

We consider the random variable Z = X + Y (for independent X and Y'). To start, we will derive the PMF for the
discrete case.

pz(z) =P(X+Y = 2)
:ZP(X:x,Y:z—x)

= px(@)py(z —2)

The PMF py is called the convolution of the PMFs of X and Y.
For the continuous case, we can first find the joint PDF of X and Z, then integrate to find the PDF of Z. We have
fX7Z(x»Z) = fX(l‘)fz|X(Z\$) = fx(x)fy(z —z)

from which we can obtain

fz(z) = /_00 fx,z(@, z)de = /_00 fx (@) fy (z — x)dx

4.2. Covariance and Correlation

The covariance of two random variables X and Y, denoted cov(X,Y), is defined as
coo(X,Y) = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]

When cov(X,Y) = 0, we can say that X and Y are uncorrelated. Roughly speaking, a positive covariance indicates
that the values of X — E[X] and Y — E[Y] obtained in a single experiment “tend” to have the same sign.

For any random variables X, Y, and Z, and any scalars a and b, we have



o cov(X,X) =var(X)

e cov(X,aY +b)=a-cov(X,Y)

o cov(X,Y +Z)=cov(X,Y) + cov(X, Z)
Note that if X and Y are independent, we have E[XY] = E[X]E[Y], which implies that cov(X,Y’) = 0. Therefore,
if X and Y are independent then they are also uncorrelated. The converse is not necessarily true.
The correlation coefficient p(X,Y") of two random variables X and Y that have nonzero variances is defined as

cov(X,Y)
var(X)var(Y)

p(X,Y) =

This is a normalized version of the covariance, and ranges from —1 to 1. (If p > 0, then the values of X —E[X] and
Y —E[Y] “tend” to have the same sign, and the size of |p| provides a normalized measure of the extent to which this
is true.)

4.2.1. Variance of the Sum of Random Variables

If X4,..., X,, are random variables with finite variance, then

var (Z Xi> = Z’UCLT(XO + Z cov( Xy, Xj)

{G.9) | i#5}

In the case of two random variables, we have

var(X +Y) = var(X) + var(Y) + 2cov(X,Y)

2 Lecture

Recap: Exponential Distribution

The best way to remember the exponential is through the complementary CDF P(X > z), which equals e =%,

The exponential distribution exhibits the memoryless property. The memoryless property for a continuous random
variable suggests that if we’ve waited ¢ seconds, the probability that we have to wait s more is as good as starting
from scratch.

Derived Distributions

Let X,Y ~ Unif[0, 1] be two independent random variables. We want to characterize Z = min (X,Y’). What is its
PDF fz(z), and what is its mean E[Z]? We have

P(Z >u)=P(X >u,Y >u)
= P(X > u)P(Y > u)
= (1—u)?

Thus we can find the CDF by complementing it, and then just take the derivative to get the density. Fyz(u) =
1— (1 —u)? and then f.(u) = L[Fz(u)] =2(1 —u) if 0 <u < 1 (and 0 otherwise).

From this, we have E[Z] = fol ufz(u)du = fol 2u(l —u)du = ... =1/3.

What is an alternate way of computing the mean? Draw a picture!
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We know that A + B+ C = 1, so let’s do linearity of expectation. E[A] + E[B] + E[C] = 1, and by symmetry
E[A] = E[B] = E[C], so E[A] = 1. (There is no reason that any interval should be bigger than the others.)

Ezample. Assume that X, Y ~ Exp(1) are independent. Then let Z = max (X,Y)—min (X,Y"). How is Z distributed
(i.e. Z ~ what)?

Suppose X < Y. Then, by the memoryless property,

PZ>z|X=1)=PY >z+1l|X=1)
=PY >z+1|Y >
=P(Y > 2)

In other words, since the left-hand side depends on [ but the right-hand side does not, Z does not care about !
Hence Z and X are independent. P(Z > z) = P(Y > z) = e *. (If Y < X, we get the same result.)

Thus we have Z ~ Exp(1).

Ezample. Let M = min (X,Y), where X ~ Exp(A;) and Y ~ Exp(A2) are independent. M ~ what?
We have

PM>u)=PX >uY >u)
=P(X >u)P(Y >u)
— oMU Aou
= ¢~ (utAa)u

which implies

M ~ Exp(A1 + A2)
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Can we write max { X1, ..., X, } in terms of min {Xy, ..., X,,}? Let the X;’s be i.i.d. and drawn from Exp(1).
Define A,, = E[max {X}, ..., X;}]. Then
A, =E[min{Xy, ..., X, }] + E[V]

where V' is the max of (n — 1) i.i.d. Exp(l) random variables. The memoryless property allows us to say this, and
to build the recursion. Continuing,

1
Efmin {X1, . X} + E[V] = — + A,y

Hence A,, = % +A,_1.



Normal Distribution

This is the most celebrated of all distributions, the mother of all distributions. The PDF of a random variable
X ~ N(p,0?) is

Fx(z) = Le—(ﬂﬁ—u)z/%2
2o

The standard normal Z ~ A(0,1) has a PDF of

fZ(Z) _ \/%ef,ﬂ/2

Normality is preserved by linear transformations (so linear systems are nice!). Formally, if Y = aX +b and X ~ N (-),
then Y ~ N (-).

Given Fx (), fx(z), and a linear function Y = aX +b, what are Fy (y) and fy (y)? We impose the constraint a > 0.

Fy(y) =P <y)
=PlaX+b<y)

—p(x<t20)
()

Thus when a > 0, Fy (y) = Fx (yT_b) To find fy (y), we take the derivative and find that fy (y) = 1 fx (yT_b)

T a

When a < 0, fy(y) = — % fx (%b) Thus, in total, fy(y) = & fx (y;b).

Suppose X ~ N(0,1),
other words, Y ~ N (u,0?).
Note that E[N (i1, 02)] = u + o. Using calculus, we can show that E[X] = 0 and var(X) = 1. Since Y = u + oX,
E[Y] = p+ oE[X] = p and var(Y) = o%var(X) = o2.

— — _1 Z
We define ®(2) = P(Z < 2) = = I e
normal. We have ®(—z) =1 — ®(z).

and Y = p+0X. Then fx(z) = ﬁe‘fﬂ and fy(y) = L fx (5£) = \/21706_(9_”)2/2"2. In

~2*/24z In other words, ®(z) is the complementary CDF of the standard

Convolution
If Z=X+4Y, where X and Y are independent,

e Discrete setting: Given {P(X =k)} and {P(Y = k)}, we would like to find {P(Z = k)}.

e Continuous setting: Given fx(z) and fy (y), we would like to find fz(z).

In the discrete case,

P(Z=2z)=P(X+Y =2)

= > PX=zY=y)
{zy | z+y==2}
=Y P(X=2)P(Y =z—x)



In the continuous case,
(oo}
f20)= [ Ix(@fv(z - o)is

The key idea is that if we add two random variables, the randomness of the sum gets larger; we are spreading out
the uncertainty. Convolution captures how much we spread out the uncertainty.
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