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1 Reading

4.1. Derived Distributions

Given the PDF of X, we are interested in calculating the PDF of Y = g(X). To do so, we should first calculate the
CDF FY of Y using the formula

FY (y) = P (g(X) ≤ y) =

∫
{x|g(x)≤y}

fX(x)dx

Then we can differentiate to obtain the PDF of Y :

fY (y) =
d

dy
FY (y)

As a special case, if Y = aX + b then we can calculate its PDF as

fY (y) =
1

|a|
fX

(
y − b
a

)

4.1.1. Sum of Independent Random Variables – Convolution

We consider the random variable Z = X + Y (for independent X and Y ). To start, we will derive the PMF for the
discrete case.

pZ(z) = P (X + Y = z)

=
∑
x

P (X = x, Y = z − x)

=
∑
x

pX(x)pY (z − x)

The PMF pZ is called the convolution of the PMFs of X and Y .

For the continuous case, we can first find the joint PDF of X and Z, then integrate to find the PDF of Z. We have

fX,Z(x, z) = fX(x)fZ|X(z|x) = fX(x)fY (z − x)

from which we can obtain

fZ(z) =

∫ ∞
−∞

fX,Z(x, z)dx =

∫ ∞
−∞

fX(x)fY (z − x)dx

4.2. Covariance and Correlation

The covariance of two random variables X and Y , denoted cov(X,Y ), is defined as

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

When cov(X,Y ) = 0, we can say that X and Y are uncorrelated. Roughly speaking, a positive covariance indicates
that the values of X − E[X] and Y − E[Y ] obtained in a single experiment “tend” to have the same sign.

For any random variables X, Y , and Z, and any scalars a and b, we have
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• cov(X,X) = var(X)

• cov(X, aY + b) = a · cov(X,Y )

• cov(X,Y + Z) = cov(X,Y ) + cov(X,Z)

Note that if X and Y are independent, we have E[XY ] = E[X]E[Y ], which implies that cov(X,Y ) = 0. Therefore,
if X and Y are independent then they are also uncorrelated. The converse is not necessarily true.

The correlation coefficient ρ(X,Y ) of two random variables X and Y that have nonzero variances is defined as

ρ(X,Y ) =
cov(X,Y )√
var(X)var(Y )

This is a normalized version of the covariance, and ranges from −1 to 1. (If ρ > 0, then the values of X − E[X] and
Y −E[Y ] “tend” to have the same sign, and the size of |ρ| provides a normalized measure of the extent to which this
is true.)

4.2.1. Variance of the Sum of Random Variables

If X1, ..., Xn are random variables with finite variance, then

var

(
n∑
i=1

Xi

)
=

n∑
i=1

var(Xi) +
∑

{(i,j) | i 6=j}

cov(Xi, Xj)

In the case of two random variables, we have

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y )

2 Lecture

Recap: Exponential Distribution

The best way to remember the exponential is through the complementary CDF P (X > x), which equals e−λx.

The exponential distribution exhibits the memoryless property. The memoryless property for a continuous random
variable suggests that if we’ve waited t seconds, the probability that we have to wait s more is as good as starting
from scratch.

Derived Distributions

Let X,Y ∼ Unif[0, 1] be two independent random variables. We want to characterize Z = min (X,Y ). What is its
PDF fZ(z), and what is its mean E[Z]? We have

P (Z > u) = P (X > u, Y > u)

= P (X > u)P (Y > u)

= (1− u)2

Thus we can find the CDF by complementing it, and then just take the derivative to get the density. FZ(u) =
1− (1− u)2, and then fz(u) = d

dz [FZ(u)] = 2(1− u) if 0 < u < 1 (and 0 otherwise).

From this, we have E[Z] =
∫ 1

0
ufZ(u)du =

∫ 1

0
2u(1− u)du = ... = 1/3.

What is an alternate way of computing the mean? Draw a picture!
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We know that A + B + C = 1, so let’s do linearity of expectation. E[A] + E[B] + E[C] = 1, and by symmetry
E[A] = E[B] = E[C], so E[A] = 1

3 . (There is no reason that any interval should be bigger than the others.)

Example. Assume that X,Y ∼ Exp(1) are independent. Then let Z = max (X,Y )−min (X,Y ). How is Z distributed
(i.e. Z ∼ what)?

Suppose X < Y . Then, by the memoryless property,

P (Z > z | X = l) = P (Y > z + l | X = l)

= P (Y > z + l | Y > l)

= P (Y > z)

In other words, since the left-hand side depends on l but the right-hand side does not, Z does not care about l!
Hence Z and X are independent. P (Z > z) = P (Y > z) = e−z. (If Y < X, we get the same result.)

Thus we have Z ∼ Exp(1).

Example. Let M = min (X,Y ), where X ∼ Exp(λ1) and Y ∼ Exp(λ2) are independent. M ∼ what?

We have

P (M > u) = P (X > u, Y > u)

= P (X > u)P (Y > u)

= e−λ1ue−λ2u

= e−(λ1+λ2)u

which implies

M ∼ Exp(λ1 + λ2)

Can we write max {X1, ..., Xn} in terms of min {X1, ..., Xn}? Let the Xi’s be i.i.d. and drawn from Exp(1).

Define An = E[max {X1, ..., Xn}]. Then

An = E[min {X1, ..., Xn}] + E[V ]

where V is the max of (n − 1) i.i.d. Exp(1) random variables. The memoryless property allows us to say this, and
to build the recursion. Continuing,

E[min {X1, ..., Xn}] + E[V ] =
1

n
+An−1

Hence An = 1
n +An−1.
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Normal Distribution

This is the most celebrated of all distributions, the mother of all distributions. The PDF of a random variable
X ∼ N (µ, σ2) is

fX(x) =
1√
2πσ

e−(x−µ)
2/2σ2

The standard normal Z ∼ N (0, 1) has a PDF of

fZ(z) =
1√
2π
e−z

2/2

Normality is preserved by linear transformations (so linear systems are nice!). Formally, if Y = aX+b and X ∼ N (·),
then Y ∼ N (·).
Given FX(x), fX(x), and a linear function Y = aX+ b, what are FY (y) and fY (y)? We impose the constraint a > 0.

FY (y) = P (Y ≤ y)

= P (aX + b ≤ y)

= P

(
X ≤ y − b

a

)
= FX

(
y − b
a

)

Thus when a > 0, FY (y) = FX

(
y−b
a

)
. To find fY (y), we take the derivative and find that fY (y) = 1

afX

(
y−b
a

)
.

When a < 0, fY (y) = − 1
afX

(
y−b
a

)
. Thus, in total, fY (y) = 1

|a|fX

(
y−b
a

)
.

Suppose X ∼ N (0, 1), and Y = µ+ σX. Then fX(x) = 1√
2π
e−x

2/2 and fY (y) = 1
σfX

(
y−µ
σ

)
= 1√

2πσ
e−(y−µ)

2/2σ2

. In

other words, Y ∼ N (µ, σ2).

Note that E[N (µ, σ2)] = µ + σ. Using calculus, we can show that E[X] = 0 and var(X) = 1. Since Y = µ + σX,
E[Y ] = µ+ σE[X] = µ and var(Y ) = σ2var(X) = σ2.

We define Φ(z) = P (Z ≤ z) = 1√
2π

∫ z
−∞ e−x

2/2dx. In other words, Φ(z) is the complementary CDF of the standard

normal. We have Φ(−z) = 1− Φ(z).

Convolution

If Z = X + Y , where X and Y are independent,

• Discrete setting: Given {P (X = k)} and {P (Y = k)}, we would like to find {P (Z = k)}.

• Continuous setting: Given fX(x) and fY (y), we would like to find fZ(z).

In the discrete case,

P (Z = z) = P (X + Y = z)

=
∑

{x,y | x+y=z}

P (X = x, Y = y)

=
∑
x

P (X = x)P (Y = z − x)
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In the continuous case,

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx

The key idea is that if we add two random variables, the randomness of the sum gets larger; we are spreading out
the uncertainty. Convolution captures how much we spread out the uncertainty.
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