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1 Reading

3.1. Continuous Random Variables and PDFs

A random variable is called continuous if there is a nonnegative function fX , called the probability density
function (PDF) of X, such that

P (X ∈ B) =

∫
B

fX(x)dx

for every subset B of the real line. The probability that the value of X falls within an interval [a, b] should be

P (a ≤ X ≤ b) =

∫ b

a

fX(x)dx

and can be interpreted as the area under the PDF’s curve. Note that any single value a has P (X = a) = 0, so including
or excluding the endpoints of an interval has no effect on its probability (e.g. P (a ≤ X ≤ b) = P (a < X < b)).

Also, if it is to be called a PDF, fX must be nonnegative (fX(x) ≥ 0 for every x) and have the normalization property∫ ∞
−∞

fX(x)dx = P (−∞ < X <∞) = 1

If δ is very small, then P ([x, x+ δ]) ≈ fX(x) · δ.

3.1.1. Expectation

The expectation of a continuous random variable X is just like the discrete case, except the PMF is replaced by the
PDF and summation is replaced by integration. E[X] can still be interpreted as the “center of gravity” of the PDF,
or as the anticipated average value of X in a large number of independent repetitions of the experiment.

E[X] =

∫ ∞
−∞

xfX(x)dx

The expected value rule for a function g(X) has the form

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx

The variance of X is defined by

var(X) = E[(X − E[X])2] =

∫ ∞
−∞

(x− E[X])2fX(x)dx ≥ 0

3.1.2. Exponential Random Variable

An exponential random variable X has a PDF of the form

fX(x) =

{
λe−λx, if x ≥ 0

0, otherwise
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where λ is a positive parameter characterizing the PDF. The probability that X exceeds a certain value decreases
exponentially, as for any a ≥ 0 we have P (X ≥ a) = e−λa. This can be a good model for the amount of time until
an incident of interest takes place, such as a meteorite landing anywhere in the Sahara desert.

The mean and the variance of an exponential random variable can be calculated to be E[X] = 1
λ and var(X) = 1

λ2 .

3.2. Cumulative Distribution Functions

While PMFs are only for discrete random variables and PDFs are only for continuous random variables, CDFs
(cumulative distribution functions) are for all. The CDF of a random variable X is denoted by FX and provides
the probability P (X ≤ x). In particular, for every x we have

FX(x) = P (X ≤ x) =

{∑
k≤x pX(k), if X is discrete∫ x
−∞ fX(t)dt, if X is continuous

3.2.1. Properties of a CDF

• FX is monotonically nondecreasing: if x ≤ y, then FX(x) ≤ FX(y).

• FX(x) tends to 0 as x→ −∞, and to 1 as x→∞.

• If X is discrete, then FX(x) is a piecewise constant function of x.

• If X is continuous, then FX(x) is a continuous function of x.

• If X is discrete and takes integer values, the PMF and the CDF can be obtained from each other by summing
or differencing:

FX(k) =

k∑
i=−∞

px(i)

pX(k) = P (X ≤ k)− P (X ≤ k − 1) = FX(k)− FX(k − 1)

• If X is continuous, the PDF and the CDF can be obtained from each other by integration or differentiation:

FX(x) =

∫ x

−∞
fX(t)dt

fX(x) =
dFX
dx

(x)

Because the CDF is defined for any type of random variable, it provides a convenient means for exploring relationships
between continuous and discrete random variables, which might otherwise lie in distinct universes.

3.3. Normal Random Variables

A normal (aka Gaussian) random variable is a continuous random variable with a PDF of the form

fX(x) =
1√
2πσ

e−(x−µ)
2/2σ2

where E[X] = µ and var(X) = σ2. Note that the PDF is symmetric around µ. The standard normal is defined as
the normal random variable with mean 0 and variance 1. Its CDF is denoted by Φ:

Φ(y) = P (Y ≤ y) = P (Y < y) =
1√
2π

∫ y

−∞
e−t

2/2dt
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One important property of normal random variables is that they are preserved by linear transformations. If X is a
normal random variable with mean µ and variance σ2, then the random variable Y = aX + b is also normal, with
mean E[Y ] = aµ+ b and variance var(Y ) = a2σ2.

This means that we can “standardize” any normal random variable X (with mean µ and variance σ2) by defining a
new random variable Y = (X − µ)/σ, which will then have mean 0 and variance 1. Then we can calculate X’s CDF
using the standard normal table:

P (X ≤ x) = P

(
X − µ
σ

≤ x− µ
σ

)
= P

(
Y ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)
Normal random variables are important because they’re good for modeling the additive effect of many independent
factors. The sum of a large number of i.i.d. random variables, whether they are individually normal or not, has an
approximately normal CDF!

3.4. Joint PDFs of Multiple Random Variables

Two continuous random variables associated with the same experiment are jointly continuous and can be described
in terms of a joint PDF fX,Y if fX,Y is a nonnegative function that satisfies

P ((X,Y ) ∈ B) =

∫∫
(x,y)∈B

fX,Y (x, y)dx dy

for every subset B of the two-dimensional plane. In the particular case where B is a rectangle of the form B =
{(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}, we have

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y)dx dy

We can view fX,Y (a, c) as the “probability per unit area” in the vicinity of (a, c).

The marginal PDF fX of X is given by

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy

while the marginal PDF fY of Y is given by

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx

If we fix some subset S of the two-dimensional plane, the corresponding uniform joint PDF on S is defined to be

fX,Y (x, y) =

{
1

area of S if (x, y) ∈ S
0 otherwise

while for any set A ⊂ S, the probability that (X,Y ) lies in A is

P ((X,Y ) ∈ A) =
area of A

area of S

If X and Y are two random variables associated with the same experiment, we define their joint CDF by

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dt ds

The PDF can be recovered from the CDF by differentiating:

fX,Y (x, y) =
∂FX,Y
∂x∂y

(x, y)
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3.4.1. Expectation

It is still the case that E[g(X,Y )] =
∫∞
−∞

∫∞
−∞ g(x, y)fX,Y (x, y)dx dy, and that E[aX + bY + c] = aE[X] + bE[Y ] + c.

3.5. Conditioning

3.5.1. Conditioning a Random Variable on an Event

The conditional PDF of a continuous random variable X, given an event A with P (A) > 0, is defined as a nonnegative
function fX|A that satisfies

P (X ∈ B|A) =

∫
B

fX|A(x)dx

for any subset B of the real line. If we condition on an event of the form {X ∈ A}, with P (X ∈ A) > 0, we have

P (X ∈ B|X ∈ A) =
P (X ∈ B,X ∈ A)

P (X ∈ A)
=

∫
A∩B fX(x)dx

P (X ∈ A)

which yields

fX|{X∈A}(x) =

{
fX(x)/P (X ∈ A) if x ∈ A
0 otherwise

If A1, A2, ..., An are disjoint events that form a partition of the sample space, and P (Ai) > 0 for all i, then

fX(x) =

n∑
i=1

P (Ai)fX|Ai
(x)

3.5.2. Conditioning One Random Variable on Another

Let X and Y be continuous random variables with joint PDF fX,Y . For any y with fY (y) > 0, the conditional PDF
of X given that Y = y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

Here, it is best to view y as a fixed number and consider fX|Y (x|y) as a function of the single variable x.

Note that

fX(x) =

∫ ∞
−∞

fY (y)fX|Y (x|y)dy

and

P (X ∈ A | Y = y) =

∫
A

fX|Y (x|y)dx

3.5.3. Conditional Expectation

Let X and Y be jointly continuous random variables, and let A be an event with P (A) > 0. Then the conditional
expectation of X given the event A is defined by

E[X|A] =

∫ ∞
−∞

xfX|A(x)dx

and the conditional expectation of X given that Y = y is defined by

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx
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The expected value rule and the total expectation theorem are both the same as their discrete counterparts, except
that sums are replaced by integrals and PMFs are replaced by PDFs. For example,

E[X] =

n∑
i=1

P (Ai)E[X|Ai]

if A1, ..., An are disjoint events that form a partition of the sample space, and similarly

E[X] =

∫ ∞
−∞

E[X|Y = y]fY (y)dy

3.5.4. Independence

Two continuous random variables X and Y are independent if their joint PDF is the product of the marginal PDFs,
i.e. fX,Y (x, y) = fX(x)fY (y) for all x, y. This is the same as the condition fX|Y (x|y) = fX(x) for all y with fY (y) > 0
and all x.

Independence implies that FX,Y (x, y) = FX(x)FY (y). The converse is also true. Also, if X and Y are independent
then we have E[XY ] = E[X]E[Y ], E[g(X)h(Y )] = E[g(X)]E[h(Y )], and var(X + Y ) = var(X) + var(Y ).

3.6. The Continuous Bayes’ Rule

The continuous Bayes’ rule is defined as

fX|Y (x|y) =
fX(x)fY |X(y|x)

fY (y)
=

fX(x)fY |X(y|x)∫∞
−∞ fX(t)fY |X(y|t)dt

If N is a discrete random variable, we have

fY (y)P (N = n | Y = y) = pN (n)fY |N (y|n)

which leads to the formulas

P (N = n | Y = y) =
pN (n)fY |N (y|n)

fY (y)
=

pN (n)fY |N (y|n)∑
i pN (i)fY |N (y|i)

and

fY |N (y|n) =
fY (y)P (N = n | Y = y)

pN (n)
=

fY (y)P (N = n | Y = y)∫∞
−∞ fY (t)P (N = n | Y = t)dt

with similar formulas existing for P (A | Y = y) and fY |A(y).

3.7. Summary and Discussion

A continuous uniform random variable over the interval [a, b] has the PDF

fX(x) =

{
1/(b− a) if a ≤ x ≤ b
0 otherwise

Its mean is E[X] = (a+ b)/2, and its variance is var(X) = (b− a)2/12.
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An exponential random variable with the parameter λ has the PDF

fX(x) =

{
λe−λx if x ≥ 0

0 otherwise

and the CDF

fX(x) =

{
1− e−λx if x ≥ 0

0 otherwise

Its mean is E[X] = 1/λ, and its variance is var(X) = 1/λ2.

A normal random variable with parameters µ and σ2 has the PDF fX(x) = 1√
2πσ

e−(x−µ)
2/2σ2

, the mean E[X] = µ,

and the variance var(X) = σ2.

2 Lecture

Entropy

If X is a discrete random variable, then H(X) = E[log2 ( 1
P (X) )] (in units of “bits/symbol”) is the Shannon entropy.

If we flip a coin with two heads and we get a heads, do we learn anything? No! We knew it would be heads. So in
this case the entropy would be 0.

In general, entropy answers the question “how surprised are we to see what we’re seeing?” The surprise in seeing
X = k is defined to be log ( 1

P (X=k) ). If we have a distribution where A occurs with probability 0.8, B occurs with

probability 0.15, and C occurs with probability 0.05, then we will be less surprised if we observe A.

Example. Let X be a random variable which takes on the characters A,B,C, and D with probability 1/2, 1/4, 1/8,
and 1/8 respectively.

In this case H(X) =
∑
k P (X = k) log2

1
P (X=k) = 1

2 log2 2 + 1
4 log2 4 + ( 1

8 log2 8) · 2 = 1.75 bits/symbol. This is the

fundamental compression limit for sending information (on average)!

Say we were sending the string A B A C D A A B. If we naively used two bits to encode each symbol, it would
cost us 16 bits in total. However, since we know that A occurs more frequently, we should make it less costly. If we
follow the encoding scheme A = 0, B = 10, C = 110, and D = 111, then the encoded stream of A B A C D A A B
becomes 01001101110010, or 14 bits for an average of 1.75 bits/symbol. So there is a bit of improvement! It turns
out that this is as good as it gets, on average.

Continuous Probability

In many (actually most) settings, a continuous sample space is more natural than a discrete one. Think of velocity,
temperature, time, distance, intensity... most things in the real world are actually continuous values!

Continuous Random Variables (CRVs)

Continuous random variables are defined on an interval instead of at a certain point. fX(x) is no longer the
probability, but the probability density. X is continuous if there exists a nonnegative function fX such that P (X ∈
B) =

∫
B
fX(x)dx is well-defined for every interval B of R. Also,

∫∞
−∞ fX(x)dx must be 1.

We can be sloppy about inequality versus equality! P (X < a) and P (X ≤ a) are the same thing.

Let’s take the probability

P (X ∈ [x, x+ ε]) =

∫ x+ε

x

fX(t)dt ≈ fX(x) · ε
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The probability density function (PDF) fX(x) is the ratio

P (X ∈ [x, x+ ε])

ε

i.e. it is probability per unit length (hence the name density). Note that fX(x) is not a probability!

The cumulative distribution function (CDF) gives us P (X ≤ x). Suddenly we can have both discrete and
continuous random variables living together. Formally, FX(x) = P (X ≤ x). We have FX(∞) = 1, and FX(−∞) = 0.
Also, if X is continuous we have fX(s) = d

dxFX(x). If X is discrete, P (X = k) = FX(k)− FX(k − 1).

X and Y are called independent if {X ≤ x} and {Y ≤ y} are independent events for all x, y ∈ R. In particular,
P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) =⇒ FXY (x, y) = FX(x)FY (y). If X and Y are independent, so are
deterministic functions of X and Y , i.e. f(X) and g(Y ).

The mean of a random variable is E[X] =
∫∞
−infty xfX(x)dx, as long as the integral converges absolutely. Note that

E[g(X)] =
∫∞
−∞ g(x)fX(x)dx.

Tail-Sum Formula
If X ≥ 0, E[X] =

∑∞
0 P (X ≥ x)dx =

∑∞
0 P (X > x)dx =

∑∞
0 [1− FX(x)]dx.

Popular CRVs

• The uniform random variable X ∼ U [a, b). Its PDF is fX(x) = 1/(b − a). Its mean is E[X] =
∫ b
a

x
b−adx =

(a+ b)/2. Its variance is var(X) = E[X2]− E[X]2 = (b− a)2/12.

• The exponential random variable is defined by its PDF of fX(x) = λe−λx for x > 0. It has an exponential
dropoff, i.e. it goes exponentially to 0 at the rate of λ. Its CDF is FX(x) =

∫∞
−∞ fX(x)dx = 1− e−λx for x ≥ 0.

The most pleasing representation of the exponential is P (X > x) = 1− (1− e−λx) = e−λx for x ≥ 0.

The exponential’s mean is E[X] =
∫∞
0
e−λxdx = 1

λ (using the tail-sum-formula). The exponential’s variance is

var(X) = E[X2]− E[X]2 = 2
λ2 − 1

λ2 = 1
λ2 .

The exponential is a continuous version of the geometric. They both share amnesia; they don’t remember (i.e.
they both have the memoryless property). If X ∼ Exp(λ), then P (X > t + s|X > t) = P (X > s) (where
t, s > 0). X can be thought of as an arrival time, notably measured in continuous time instead of a discrete
number of coin flips. The exponential can answer the question “what is the probability that [something of
interest] will arrive in the next X seconds?”

Proof of the memoryless property. P (X > t + s|X > t) = P (X > t + s,X > t)/P (X > t) = P (X >
t+ s)/P (X > t) = e−λ(t+s)/e−λt = e−λs = P (X > s).

References

[1] D.P. Bertsekas and J.N. Tsitsiklis. Introduction to Probability. Athena Scientific books. Athena Scientific, 2002.

7


	Reading
	Lecture

