Probability and Random Processes Poisson Properties, Entropy

1 Lecture

$$var(X_1 + X_2 + \dots + X_n) = \sum_{i=1}^{n} var(X_i) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} cov(X_i, X_j)$$

where $cov(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$

The correlation coefficient is defined as

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)}\sqrt{var(Y)}}$$

Note that $-1 \le \rho \le 1$.

Example: seats on a plane. Same story: passengers sit in random seats. X is the number of passengers who sit in their actual assigned seats. From last time, we know that $\mathbb{E}[X] = 1$. What is var(X)? Again,

$$X_i = \begin{cases} 1 & \text{if ith passenger is in his assigned seat} \\ 0 & \text{otherwise} \end{cases}$$

and $X = \sum_{i=1}^{n} X_i$. (Each X_i is an **indicator variable**, which means it takes on a value of either 1 or 0. Indicator variables and Bernoulli random variables are the same.)

We have $\mathbb{E}[X_i] = \frac{1}{n}$, and $var(X) = \frac{1}{n}(1 - \frac{1}{n}) = \frac{n-1}{n^2}$. Next, we'll compute the covariance of each (X_i, X_j) pair.

$$cov(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$$

What is $\mathbb{E}[X_iX_i]$? If we refer to X_iX_i as z_{ij} , where

$$z_{ij} = \begin{cases} 1 & \text{if both } i \text{ and } j \text{ are in their seats} \\ 0 & \text{otherwise} \end{cases}$$

then $\mathbb{E}[z_{ij}] = P(z_{ij} = 1) = \frac{1}{n(n-1)}$. And we can put it all together:

$$var(X) = \sum_{i=1}^{n} var(X_i) + \sum_{i} \sum_{j,j\neq i} cov(X_i, X_j)$$

$$= \sum_{i=1}^{n} \frac{n-1}{n^2} + \sum_{i=1}^{n} \sum_{j=1,j\neq i}^{n} \left(\frac{1}{n(n-1)} - \frac{1}{n^2}\right)$$

$$= n\frac{n-1}{n^2} + n(n-1)\left(\frac{1}{n(n-1)} - \frac{1}{n^2}\right)$$

$$= \frac{n-1}{n} + \left(1 - \frac{n-1}{n}\right)$$

$$= 1$$

Meanwhile, $P(\text{nobody sits in assigned seat}) = \left(\frac{n-1}{n}\right)^n \to \frac{1}{e}$. This is a simplification in which passengers choose seats uniformly at random and can sit on each other's laps.

Review of Popular Discrete Distributions

- Uniform : $\mathbb{E}[X] = \frac{n-1}{2}$, $var(X) = \frac{n^2-1}{12}$
- Bernoulli(p): $\mathbb{E}[X] = p$, var(X) = p(1-p)
- Binomial $(n,p): P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \ \mathbb{E}[X] = np, \ var(X) = np(1-p)$
- Poisson(λ): $P(X=k) = e^{-\lambda \frac{\lambda^k}{k!}}$ (k=0,1,...), $\mathbb{E}[X] = \lambda$, $var(X) = \lambda$
- Geometric(p): $P(X = k) = (1 p)^{k-1}p$ (k = 1, 2, ...), $\mathbb{E}[X] = \frac{1}{p}$, var(X) = ?

Memoryless Property - Variance Calculation

Let's calculate var(X), for X a geometric random variable. To do so, we first define the memoryless property of Geom(p), which states that $P(X = m + n \mid X > m) = P(X = n)$.

As a consequence, $\mathbb{E}[g(X) \mid X > 1] = \mathbb{E}[g(1+X)]$. For example, $\mathbb{E}[X \mid X > 1] = \mathbb{E}[1+X] = 1 + \mathbb{E}[X]$. *Proof.*

$$\begin{split} \mathbb{E}[g(X)\mid X>1] &= \sum_{k=1}^{\infty} g(k)P(X=k\mid X>1) \\ &= \sum_{k=1}^{\infty} g(k)P(X=k-1) \quad \text{(this follows from the memoryless property)} \\ &= \sum_{l=1}^{\infty} g(1+l)P(X=l) \quad \text{(here, we let } l=k-1) \\ &= \mathbb{E}[g(1+X)] \\ &= 1 \end{split}$$

Also,

$$\begin{split} \mathbb{E}[X^2] &= \mathbb{E}[X^2 \mid X = 1]P(X = 1) + \mathbb{E}[X^2 \mid X > 1]P(X > 1) \\ &= (1)(p) + \mathbb{E}[(1 + X)^2](1 - p) \\ &= 1 + 2\mathbb{E}[X] + \mathbb{E}[X^2] \\ &= \frac{2 - p}{p^2} \end{split}$$

Thus $var(X) = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}$.

Poisson Properties

Sum of Independent Poissons

Say we have $X \sim \text{Pois}(\lambda)$, $Y \sim \text{Pois}(\mu)$, X, Y independent. Now, if Z = X + Y then $Z \sim \text{Pois}(\lambda + \mu)$. The sum of independent Poissons is itself Poisson! The intuition for this is based on binomial limiting behavior.

We define

- $X_1 \sim B(n, p_1)$, where $p_1 = \lambda_1/n$ (n large, λ_1 constant)
- $X_2 \sim B(n, p_2)$, where $p_2 = \lambda_2/n$ (n large, λ_2 constant)

What is a good approximation to $Y = X_1 + X_2$, assuming X_1 and X_2 are independent? Drawing each X_i as a possible bitstring, we see

 X_1 : 0 0 0 0 1 0 0 0 ... 1 ... (1 appears with probability p_1) X_2 : 0 0 1 0 0 0 0 0 ... 1 ... (1 appears with probability p_2) Y: 0 0 1 0 1 0 0 0 ... 2 ...

In the case of Y,

- 1 appears with probability $p_1(1-p_2) + p_2(1-p_1) = p_1 + p_2 2p_1p_2$
- 2 appears with probability p_1p_2
- 0 appears with probability $(1 p_1)(1 p_2) = 1 p_1 p_2 p_1 p_2$

Intuition: if $p_1 = \lambda_1/n$ and $p_2 = \lambda_2/n$, then $p_1p_2 = \lambda_1, \lambda_2/n^2$. Therefore, for large n, 2 will essentially never appear! Let's define events.

$$T$$
: every Y_i is 0 or 1 for $i = 1, 2, ..., n$
 A : at least one Y_i is 2 for $i = 1, 2, ..., n$

It follows that

$$P(Y = k) = P(Y = k \mid T)P(T) + P(Y = k \mid A)P(A)$$

where

$$P(A) = P\left(\bigcup_{i=1}^{n} (Y_i = 2)\right) \le \sum_{i=1}^{n} P(Y_i = 2) = \sum_{i=1}^{n} \frac{\lambda_1 \lambda_2}{n^2}$$
$$P(A) \le \frac{\lambda_1 \lambda_2}{n}$$

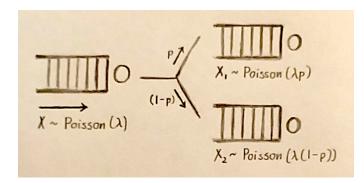
Thus,

$$P(Y = k) = P(Y = k \mid T) \left(1 - \frac{\lambda_1 \lambda_2}{n} \right) + P(Y = k \mid A) \left(\le \frac{\lambda_1 \lambda_2}{n} \right)$$

As n goes to ∞ , $(1 - (\lambda_1 \lambda_2)/n)$ goes to 1 and $(\leq (\lambda_1 \lambda_2)/n)$ goes to 0. Therefore, at large values of n we have $P(Y = k) = P(Y = k \mid T)$. In other words, we can assume that Y consists only of 0s and 1s (in turn implying that X_1 and X_2 are never 1 simultaneously). Thus we can model Y as a sum of Bernoulli variables and a Poisson itself.

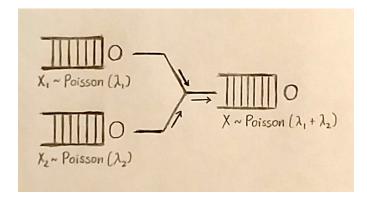
Since only one of X_{1i} and X_{2i} will be 1 for any given i, we can simply represent Y's λ parameter as $\lambda_1 + \lambda_2$.

Poisson Splitting



Poisson splitting. Each box-like entity represents a queue; each circle represents a server. Packets come in at the rate given by X. At the junction, packets go up the top path with probability p and down the bottom path with probability (1-p). We can see that the weights for the individual distributions are split accordingly.

Poisson Merging



This is just another name for a sum of independent Poissons. For a [more] formal proof of Poisson merging, see Discussion 2 of EE 126's Spring 2018 offering.

From that discussion: the Poisson distribution is used to model rare events (e.g. the number of customers who enter a store in the next hour). This modeling assumption is justified by the limiting behavior of the binomial distribution, specifically as the number of trials n goes to ∞ and the probability of success per trial p goes to 0.

Say we have two independent streams of rare events (e.g. the number of female customers and male customers entering a store). If we do not care to distinguish between the two types of rare events, we can represent the combined stream of events as a single Poisson distribution. This is known as **Poisson merging**.

Probability and Information: Entropy

Given P(X = x), we have information about the relative frequencies of the values of X. Can this information be expressed in a more "fundamental" way?

Suppose there are N possible outcomes of X. Then we'll need about $\log_2 N$ bits to represent them (e.g. if N=4, we need to enumerate the four possibilities A, B, C, and D which can be encoded as 00, 01, 10, and 11 respectively). But if A occurs much more frequently than the others, shouldn't we try to use fewer bits on A? (Imagine we're sending this information over a network, and there's a price for every bit we send).

We can think of $\log_2 \frac{1}{P(X=k)}$ as being the "surprise" in obtaining X=k. (Side note: this was observed by Claude Shannon, the father of information theory.) As a consequence, under our pay-per-bit model we should spend very few bits on things that we expect to happen. If we live in a sunny state, we don't want to spend the same amount of money describing if it's sunny or rainy! Essentially, if an event is really a surprise, we should be fine paying more for it.

Shannon referred to this concept as the "self-information" of X.

The expected value of the "surprise" is equal to

$$H(X) = \mathbb{E}\left[\log_2\frac{1}{P(X=x)}\right] = \sum_x P(X=x)\log_2\frac{1}{P(X=x)}$$

bits. Note that H(X) represents the minimum number of bits needed to represent a file.

2 Extra

If X_i is an indicator variable, then $\mathbb{E}[X_i^2] = \mathbb{E}[X_i]$. We only care about the case where $X_i = 1$.