EE 126 Pro]oa]oility and Random Processes
J anuary 25, 2018 Poisson Properties, Entropy

1 Lecture

var(X1 + Xo + ... + X)) Zvar —l—zn: i cov(X;, X;)

i=1 i=1j

I
—
<.
*
&

where COU(XZ',X]') = ]E[XZXJ] — E[XZ]E[X]]
The correlation coefficient is defined as
cov(X,Y)

Vovar(X)y/var(Y

p(X,Y) =

Note that —1 < p < 1.

Ezxample: seats on a plane. Same story: passengers sit in random seats. X is the number of passengers who sit in
their actual assigned seats. From last time, we know that E[X] = 1. What is var(X)? Again,

_J 1 ifith passenger is in his assigned seat
" 10 otherwise

and X = Y1 | X;. (Each X, is an indicator variable, which means it takes on a value of either 1 or 0. Indicator
variables and Bernoulli random variables are the same.)

We have E[X;] = L, and var(X) = 2(1 — 1) = 251, Next, we’ll compute the covariance of each (X;, X;) pair.
cov(Xi, X;j) = E[X; X;] — E[X;]E[X]
What is E[X;X;]? If we refer to X;X; as z;;, where

1 if both ¢ and j are in their seats
Zij = .
0 otherwise

then E[z;;] = P(z;; = 1) = ﬁ And we can put it all together:

var(X) = ZUGJ‘(XZ') + Z Z cov(X;, X;)
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Meanwhile, P(nobody sits in assigned seat) = (”T_l)n — % This is a simplification in which passengers choose seats
uniformly at random and can sit on each other’s laps.



Review of Popular Discrete Distributions

e Uniform : E[X] = 251, var(X) = n-1

2 12

e Bernoulli(p) : E[X] = p, var(X) =p(1l —p)

e Binomial(n,p) : P(X =k)= (})p*(1 —p)"*, E[X] = np, var(X) =np(1 —p)

Poisson(}) : P(X = k) = e 20 (k=0,1,...), E[X] = A, var(X) = A

Geometric(p) : P(X =k)=(1-p)k1p (k=1,2,..), E[X] =%, var(X) =7

Memoryless Property - Variance Calculation

Let’s calculate var(X), for X a geometric random variable. To do so, we first define the memoryless property of
Geom(p), which states that P(X =m+n | X >m) = P(X =n).

As a consequence, E[g(X) | X > 1] = E[g(1 + X)]. For example, E[X | X > 1] =E[1 + X| =1+ E[X].

Proof.

M8
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g(k)P(X =k —1) (this follows from the memoryless property)
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g(1+1)P(X =1) (here, weletl =k —1)
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Also,

E[X? =E[X? | X =1]P(X = 1)+ E[X? | X > 1]P(X > 1)
= (1)(p) +E[(1+X)’](1 —p)
=1+ 2E[X] + E[X?]
_2-p
-

Thus var(X) = 2;217 - 1% = 1p—2p_

Poisson Properties
Sum of Independent Poissons

Say we have X ~ Pois(\), Y ~ Pois(u), X,Y independent. Now, if Z = X +Y then Z ~ Pois(A + p). The sum of
independent Poissons is itself Poisson! The intuition for this is based on binomial limiting behavior.

We define

e Xy ~ B(n,p1), where py = A;/n  (n large, A1 constant)

e X5 ~ B(n,p2), where po = Ao/n  (n large, Ay constant)



What is a good approximation to ¥ = X; + X5, assuming X; and X, are independent? Drawing each X; as a
possible bitstring, we see

X1:00001000...1.. (1 appears with probability p;)
X2:00100000...1... (1appearswith probability ps)
Y: 00101000 ... 2 ...

In the case of Y,
e 1 appears with probability pi(1 —p2) +p2(1 —p1) = p1 +p2 — 2p1p2
e 2 appears with probability pipo

e 0 appears with probability (1 —p1)(1 —p2) =1 —p1 —p2 — p1p2

Intuition: if py = A\1/n and pa = Aa/n, then p1ps = A1, A2/n?. Therefore, for large n, 2 will essentially never appear!

Let’s define events.

T: every V;isOor1lfori=1,2,....n

A: at least one YV is 2 fori = 1,2,...,n

It follows that

P(Y =k)=P(Y =k | T)P(T) + P(Y =k | A)P(A)
where
P(A)=P <CJ(Y;‘ = 2)) < ip(yi _9) = Z": AT?Q
- P(4) < :1;2 )
Thus,

P(Y—k)—P(Y—k|T)<1_)‘1n)‘2>+P(Y_k|A)(< A1nA2>

As n goes to 0o, (1 — (AA2)/n) goes to 1 and (< (A1A2)/n) goes to 0. Therefore, at large values of n we have
P(Y =k)=P(Y =k | T). In other words, we can assume that Y consists only of 0s and 1s (in turn implying that
X1 and X5 are never 1 simultaneously). Thus we can model Y as a sum of Bernoulli variables and a Poisson itself.

Since only one of X;; and Xo; will be 1 for any given ¢, we can simply represent Y’s A parameter as A\; + Aq.

Poisson Splitting

/ @)

X, ~ Poisson (Ap) Poisson splitting. Each box-like entity represents
a queue; each circle represents a server. Packets
come in at the rate given by X. At the junction,

O packets go up the top path with probability p and
down the bottom path with probability (1 — p).

X, ~ Poisson (A(1-p)) We can see that the weights for the individual

distributions are split accordingly.

(l-p)\

E——
X ~ Poisson (X)




Poisson Merging

O
X, ~ Poisson (1,) \

= O
O f X ~ Poisson (A, + ;)

X, ~ Poisson (A,;)

This is just another name for a sum of independent Poissons. For a [more] formal proof of Poisson merging, see
Discussion 2 of EE 126’s Spring 2018 offering.

From that discussion: the Poisson distribution is used to model rare events (e.g. the number of customers who enter
a store in the next hour). This modeling assumption is justified by the limiting behavior of the binomial distribution,
specifically as the number of trials n goes to oo and the probability of success per trial p goes to 0.

Say we have two independent streams of rare events (e.g. the number of female customers and male customers
entering a store). If we do not care to distinguish between the two types of rare events, we can represent the
combined stream of events as a single Poisson distribution. This is known as Poisson merging.

Probability and Information: Entropy

Given P(X = z), we have information about the relative frequencies of the values of X. Can this information be
expressed in a more “fundamental” way?

Suppose there are N possible outcomes of X. Then we’ll need about log, N bits to represent them (e.g. if N =4,
we need to enumerate the four possibilities A, B, C, and D which can be encoded as 00, 01, 10, and 11 respectively).
But if A occurs much more frequently than the others, shouldn’t we try to use fewer bits on A? (Imagine we're
sending this information over a network, and there’s a price for every bit we send).

We can think of log, ﬁ as being the “surprise” in obtaining X = k. (Side note: this was observed by Claude

Shannon, the father of information theory.) As a consequence, under our pay-per-bit model we should spend very
few bits on things that we expect to happen. If we live in a sunny state, we don’t want to spend the same amount
of money describing if it’s sunny or rainy! Essentially, if an event is really a surprise, we should be fine paying more
for it.

Shannon referred to this concept as the “self-information” of X.

The expected value of the “surprise” is equal to

H(X)=E [k)g2 PIX } ZP =z logQﬁ

bits. Note that H(X) represents the minimum number of bits needed to represent a file.

2 Extra

If X; is an indicator variable, then E[X?] = E[X;]. We only care about the case where X; = 1.
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