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1 Lecture

var(X1 +X2 + ...+Xn) =

n∑
i=1

var(Xi) +

n∑
i=1

n∑
j=1,j 6=i

cov(Xi, Xj)

where cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ].

The correlation coefficient is defined as

ρ(X,Y ) =
cov(X,Y )√

var(X)
√
var(Y )

Note that −1 ≤ ρ ≤ 1.

Example: seats on a plane. Same story: passengers sit in random seats. X is the number of passengers who sit in
their actual assigned seats. From last time, we know that E[X] = 1. What is var(X)? Again,

Xi =

{
1 if ith passenger is in his assigned seat

0 otherwise

and X =
∑n
i=1Xi. (Each Xi is an indicator variable, which means it takes on a value of either 1 or 0. Indicator

variables and Bernoulli random variables are the same.)

We have E[Xi] = 1
n , and var(X) = 1

n (1− 1
n ) = n−1

n2 . Next, we’ll compute the covariance of each (Xi, Xj) pair.

cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ]

What is E[XiXj ]? If we refer to XiXj as zij , where

zij =

{
1 if both i and j are in their seats

0 otherwise

then E[zij ] = P (zij = 1) = 1
n(n−1) . And we can put it all together:

var(X) =

n∑
i=1

var(Xi) +
∑
i

∑
j,j 6=i

cov(Xi, Xj)

=

n∑
i=1

n− 1

n2
+

n∑
i=1

n∑
j=1,j 6=i

(
1

n(n− 1)
− 1

n2

)

= n
n− 1

n2
+ n(n− 1)

(
1

n(n− 1)
− 1

n2

)
=
n− 1

n
+

(
1− n− 1

n

)
= 1

Meanwhile, P (nobody sits in assigned seat) =
(
n−1
n

)n → 1
e . This is a simplification in which passengers choose seats

uniformly at random and can sit on each other’s laps.
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Review of Popular Discrete Distributions

• Uniform : E[X] = n−1
2 , var(X) = n2−1

12

• Bernoulli(p) : E[X] = p, var(X) = p(1− p)

• Binomial(n, p) : P (X = k) =
(
n
k

)
pk(1− p)n−k, E[X] = np, var(X) = np(1− p)

• Poisson(λ) : P (X = k) = e−λ λ
k

k! (k = 0, 1, ...), E[X] = λ, var(X) = λ

• Geometric(p) : P (X = k) = (1− p)k−1p (k = 1, 2, ...), E[X] = 1
p , var(X) = ?

Memoryless Property - Variance Calculation

Let’s calculate var(X), for X a geometric random variable. To do so, we first define the memoryless property of
Geom(p), which states that P (X = m+ n | X > m) = P (X = n).

As a consequence, E[g(X) | X > 1] = E[g(1 +X)]. For example, E[X | X > 1] = E[1 +X] = 1 + E[X].

Proof.

E[g(X) | X > 1] =

∞∑
k=1

g(k)P (X = k | X > 1)

=

∞∑
k=1

g(k)P (X = k − 1) (this follows from the memoryless property)

=

∞∑
l=1

g(1 + l)P (X = l) (here, we let l = k − 1)

= E[g(1 +X)]

= 1

Also,

E[X2] = E[X2 | X = 1]P (X = 1) + E[X2 | X > 1]P (X > 1)

= (1)(p) + E[(1 +X)2](1− p)
= 1 + 2E[X] + E[X2]

=
2− p
p2

Thus var(X) = 2−p
p2 −

1
p2 = 1−p

p2 .

Poisson Properties

Sum of Independent Poissons

Say we have X ∼ Pois(λ), Y ∼ Pois(µ), X, Y independent. Now, if Z = X + Y then Z ∼ Pois(λ+ µ). The sum of
independent Poissons is itself Poisson! The intuition for this is based on binomial limiting behavior.

We define

• X1 ∼ B(n, p1), where p1 = λ1/n (n large, λ1 constant)

• X2 ∼ B(n, p2), where p2 = λ2/n (n large, λ2 constant)
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What is a good approximation to Y = X1 + X2, assuming X1 and X2 are independent? Drawing each Xi as a
possible bitstring, we see

X1: 0 0 0 0 1 0 0 0 ... 1 ... (1 appears with probability p1)

X2: 0 0 1 0 0 0 0 0 ... 1 ... (1 appears with probability p2)

Y : 0 0 1 0 1 0 0 0 ... 2 ...

In the case of Y ,

• 1 appears with probability p1(1− p2) + p2(1− p1) = p1 + p2 − 2p1p2

• 2 appears with probability p1p2

• 0 appears with probability (1− p1)(1− p2) = 1− p1 − p2 − p1p2

Intuition: if p1 = λ1/n and p2 = λ2/n, then p1p2 = λ1, λ2/n
2. Therefore, for large n, 2 will essentially never appear!

Let’s define events.

T : every Yi is 0 or 1 for i = 1, 2, ..., n

A: at least one Yi is 2 for i = 1, 2, ..., n

It follows that

P (Y = k) = P (Y = k | T )P (T ) + P (Y = k | A)P (A)

where

P (A) = P

(
n⋃
i=1

(Yi = 2)

)
≤

n∑
i=1

P (Yi = 2) =

n∑
i=1

λ1λ2
n2

P (A) ≤ λ1λ2
n

Thus,

P (Y = k) = P (Y = k | T )

(
1− λ1λ2

n

)
+ P (Y = k | A)

(
≤ λ1λ2

n

)
As n goes to ∞, (1 − (λ1λ2)/n) goes to 1 and (≤ (λ1λ2)/n) goes to 0. Therefore, at large values of n we have
P (Y = k) = P (Y = k | T ). In other words, we can assume that Y consists only of 0s and 1s (in turn implying that
X1 and X2 are never 1 simultaneously). Thus we can model Y as a sum of Bernoulli variables and a Poisson itself.

Since only one of X1i and X2i will be 1 for any given i, we can simply represent Y ’s λ parameter as λ1 + λ2.

Poisson Splitting

Poisson splitting. Each box-like entity represents
a queue; each circle represents a server. Packets
come in at the rate given by X. At the junction,
packets go up the top path with probability p and
down the bottom path with probability (1 − p).
We can see that the weights for the individual
distributions are split accordingly.
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Poisson Merging

This is just another name for a sum of independent Poissons. For a [more] formal proof of Poisson merging, see
Discussion 2 of EE 126’s Spring 2018 offering.

From that discussion: the Poisson distribution is used to model rare events (e.g. the number of customers who enter
a store in the next hour). This modeling assumption is justified by the limiting behavior of the binomial distribution,
specifically as the number of trials n goes to ∞ and the probability of success per trial p goes to 0.

Say we have two independent streams of rare events (e.g. the number of female customers and male customers
entering a store). If we do not care to distinguish between the two types of rare events, we can represent the
combined stream of events as a single Poisson distribution. This is known as Poisson merging.

Probability and Information: Entropy

Given P (X = x), we have information about the relative frequencies of the values of X. Can this information be
expressed in a more “fundamental” way?

Suppose there are N possible outcomes of X. Then we’ll need about log2N bits to represent them (e.g. if N = 4,
we need to enumerate the four possibilities A, B, C, and D which can be encoded as 00, 01, 10, and 11 respectively).
But if A occurs much more frequently than the others, shouldn’t we try to use fewer bits on A? (Imagine we’re
sending this information over a network, and there’s a price for every bit we send).

We can think of log2
1

P (X=k) as being the “surprise” in obtaining X = k. (Side note: this was observed by Claude

Shannon, the father of information theory.) As a consequence, under our pay-per-bit model we should spend very
few bits on things that we expect to happen. If we live in a sunny state, we don’t want to spend the same amount
of money describing if it’s sunny or rainy! Essentially, if an event is really a surprise, we should be fine paying more
for it.

Shannon referred to this concept as the “self-information” of X.

The expected value of the “surprise” is equal to

H(X) = E
[
log2

1

P (X = x)

]
=
∑
x

P (X = x) log2

1

P (X = x)

bits. Note that H(X) represents the minimum number of bits needed to represent a file.

2 Extra

If Xi is an indicator variable, then E[X2
i ] = E[Xi]. We only care about the case where Xi = 1.
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