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1 Lecture

Recap: Discrete Random Variables

• PX(k) = P (X = k)

• E[X] =
∑

x xP (X = x) =
∑

ω∈ΩX(ω)P (ω)

• E[g(X)] =
∑

x g(x)P (X = x)

• var(X) = E[X2]− E[X]2

• A joint PMF takes the following form: P (X = x, Y = y) = P (X = x ∩ Y = y))

• A marginal PMF takes the following form:
∑

x P (X = x, Y = y) = P (Y = y)

• E[g(X,Y )] =
∑

x,y g(x, y)P (x = x, Y = y)

Linearity of Expectation

• E[X + Y ] = E[X] + E[Y ]

• E[aX + c] = aE[X] + c

This is a very powerful concept, especially when it comes to computing the expectation of a sum of random variables:

E[X1 +X2 + ...+Xn] = E[X1] + E[X2] + ...+ E[Xn]

Say we have X ∼ Bin(n, p), i.e. X = X1 + X2 + ... + Xn where Xi ∼ Bernoulli(p), and we’re looking for E[X].
Linearity of expectation swiftly decrees that E[X] = np.

Example: seats on a plane. It is a full flight. n passengers have assigned seats but ignore them and sit in random
seats. What is E[number of passengers who sit in their assigned seats]?

Let X = # passengers who sit in their assigned seats. Let Xi = 1 if passenger i sits in his own seat, and 0 otherwise.
Then X = X1 + ...+Xn, and

E[X] = E[X1 + ...+Xn]

= E[X1] + E[X2] + ...+ E[Xn]

= nE[X1]

= nP (X1 = 1)

= 1

This works even though the Xi’s are not independent. In general, Xi’s will not be independent, but the mean formula
doesn’t care!
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Conditioning of Random Variables

Conditioning on random variables is similar to conditioning on events, where P (X = k | A) = P (X=k ∩ A)
P (A) . In the

random variable case, P (X = k | Y = m) = P (X=k, Y =m)
P (Y =m) = PX|Y (k | m). Note that PX|Y (k | m) is referred to as

the conditional PMF of X given Y .

Incidentally, X | Y is just another random variable! How do we know? Because P (X | Y ) ≥ 0, and
∑

x PX|Y (x | y) =∑
x

PX,Y (x,y)
PY (y) = 1

PY (y)

∑
x PX,Y (x, y) = 1

PY (y)PY (y) = 1.

Independence of Random Variables

Independence of random variables is similar to independence of events. If X and Y are independent random variables,
PX,Y (x, y) = PX(x)PY (y) ∀ x, y. This generalizes to more than two random variables.

If X and Y are independent, then E[XY ] = E[X]E[Y ]. This often comes in handy!
Proof. E[XY ] =

∑
x

∑
y xyPX,Y (x, y) =

∑
x

∑
y xyPX(x)PY (y) = (

∑
x xPX(x))(

∑
y yPY (y)) = E[X]E[Y ]

Variance

As we’ve seen, the mean can be used as a single descriptor for a distribution. But it doesn’t tell us the whole story.
Another quantity we might ask for is the spread – maybe as the variance. The variance of a random variable X is
defined as var(X) = E[(X − E[X])2] = E[X2]− E[X]2.

Some “obvious” facts about the variance:

• var(aX) = a2var(X)

• var(b) = 0 (where b is a constant)

• var(aX + b) = a2var(X)

Also potentially important: var(X − E[X]) = var(X). The variance doesn’t change if you strip the mean!

If X1 and X2 are independent random variables s.t. X = X1 + X2, then var(X) = var(X1) + var(X2). If X and
Y are dependent, var(X) = var(X1) + var(X2) + 2(E[XY ]−E[X]E[Y ]) (where E[XY ]−E[X]E[Y ] is defined as the
covariance between X and Y ). We don’t care about independence or dependence for the mean case, but we do care
for the variance case!

Example: variance of a Bernoulli random variable. X ∼ Bin(n, p). What is its variance? We know that X =
X1 + X2 + ... + Xn, where Xi ∼ Bernoulli(p) i.i.d. Since the random variables are independent, we have var(X) =
n · var(X1). So what is the variance of X1? (X1 = 1 with probability p, and 0 with probability (1− p).) It follows
that var(X1) = E[X2

1 ]− E[X1]2 = p− p2 = p(1− p), and therefore var(X) = n · var(X1) = np(1− p).

Geometric Distribution

Example: the St. Petersburg Paradox. Let’s play a game. I will pay you 2k, where k is the number of flips of a fair
coin it takes to get a heads. Thus Y = 2X where X ∼ Geometric( 1

2 ). For example, TTTH =⇒ Y = 24 = 16, and
the payout of TTTH would be $16.

Paradoxically, the expected payout is infinite!

E[Y ] =

∞∑
k=1

2kP (X = k) =

∞∑
k=1

2k2−k =

∞∑
k=1

1 =∞
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In general, X ∼ Geom(p) is a random variable. It is the “time to first success” random variable, so it often tells
a nice story – e.g. first time to flip a heads, when flipping a coin independently with P (H) = p on each flip (i.i.d.
trials). In this example, TTTH =⇒ X = 4.

What is the PMF? (Visualize the story!) We find that the PMF is described by

P (X = k) = (1− p)k−1p, k = 1, 2, ...

P (X > k) = (1− p)k, k = 1, 2, ...

P (X ≤ k) = 1− (1− p)k, k = 1, 2, ...

Note: P (X ≤ k) is the CDF (the cumulative distribution function).

What is E[X]? We will explore three methods of deriving the expectation (just because Prof. Ramchandran can).

Deriving E[X] (Method I: Naive)

E[X] =

∞∑
k=1

k(1− p)k−1p

= p

∞∑
k=1

k(1− p)k−1

Note that
∑∞

k=0 α
k = 1/(1− α) if |α| < 1.

Let f(p) =
∑∞

k=1(1− p)k =
∑∞

k=0(1− p)k − 1 =
∑∞

k=0
1−p
p . Then f ′(p) = −

∑∞
k=1 k(1− p)k−1 = −p−(1−p)

p2 = − 1
p2 .

E[X] = p

∞∑
k=1

k(1− p)k−1 =
1

p

Deriving E[X] (Method II: Tail Sum Formula)

The tail sum formula (TSF) is defined as follows: if X ≥ 0, E[X] =
∑∞

k=1 P (X ≥ k).

We thus have E[X] =
∑∞

k=1(1− p)k−1 = 1
p .

Proof of the TSF:

E[X] =

∞∑
k=1

kP (X = k)

=

∞∑
k=1

k∑
j=1

1 · P (X = k)

=

∞∑
j=1

∞∑
k=j

P (X = k)

=

∞∑
j=1

P (X ≥ j)

Note: replacing k with a sum of k ones is an example of lifting. Lifting is “when you go to a higher level and you
sort of see everything.” Also, to quote Prof. Ramchandran, “when you have double summations, the first thing you
should do is switch the order.”
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Deriving E[X] (Method III: Conditioning and “Renewal”)

Here, we exploit the memorylessness property of the geometric distribution Geom(p).

Theorem (the memorylessness property). P (X > n+m | X > n) = P (X > m), n,m > 0.
Motivating question: if we’ve already waited n trials without success, what is the chance we’ll wait m more trials
without success? The idea is that the geometric distribution doesn’t care how much we’ve failed so far – wherever
we are, we’ve learned nothing since we started.

Proof.

LHS =
P (X > n+m,X > n)

P (X > n)
=
P (X > n+m)

P (X > n)
=

(1− p)n+m

(1− p)n
= (1− p)m = P (X > m) = RHS

Thus:

E[X] = E[X|X = 1]P (X = 1) + E[X|X > 1]P (X > 1)

= E[X|X = 1]P (X = 1) + (1 + E[X])P (X > 1) (due to memoryless property)

= 1 · p+ (1 + E[X])(1− p)

Solving, we have

E[X] = p+ (1− p)(E[X] + 1)

0 = −pE[X] + 1

E[X] =
1

p

Coupon Collection

Example: the coupon collector problem. We need to get one of each coupon from a set of n coupons. We have to buy
cereal boxes to get these coupons. What is the expected number of cereal boxes we’ll have to purchase in order to
collect all n distinct coupons? (In other words, what is E[# cereal boxes needed to buy n distinct coupons]?)

• Let X = time to get n coupons.

• Let X1 = time to get the first distinct coupon.

– We have E[X1] = 1, for obvious reasons.

• Let X2 = time to get the second distinct coupon, after getting the first.

– We have E[X2] = geometric with distribution P (get second | got first) = n−1
n , hence E[X2] = n

n−1 .

In general,

E[Xj ] =
n

n− (i− 1)
=

n

n+ 1− i
Summing these all up, we arrive at

E[X] = E[X1 + ...+Xn] =

n∑
i

E[Xi] ≈ n lnn

4


	Lecture

