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1 Lecture

Recap: Discrete Random Variables
o Px(k)=P(X =k)
o E[X] =3, aP(X =2) =3 cq X(w)P(w)
o E[g(X)] =2, 9(x)P(X =)

e var(X) =E[X?] - E[X]?

A joint PMF takes the following form: P(X =z, Y =y)=P(X =znNY =y))
e A marginal PMF takes the following form: ) P(X =z,Y =y) =P(Y =y)

e Elg(X.Y)] =2, ,9(z,y)Plr=2,Y =y)

Linearity of Expectation
e EX +Y]=E[X]|+E[Y]

e ElaX + ] =aE[X]+¢

This is a very powerful concept, especially when it comes to computing the expectation of a sum of random variables:

E[X: + X2 + ... + X,,] = E[Xy] + E[X3] + ... + E[X,}]

Say we have X ~ Bin(n,p), i.e. X = X5 + X5 + ... + X,, where X; ~ Bernoulli(p), and we’re looking for E[X].
Linearity of expectation swiftly decrees that E[X] = np.

Example: seats on a plane. It is a full flight. n passengers have assigned seats but ignore them and sit in random
seats. What is E[number of passengers who sit in their assigned seats|?

Let X = # passengers who sit in their assigned seats. Let X; = 1 if passenger ¢ sits in his own seat, and 0 otherwise.
Then X = X7+ ...+ X,,, and

EX]=E[X; + ... + X,
=E[X] +E[Xs] + ... + E[X,,]
= nE[X;]
=nP(X; =1)
=1

This works even though the X;’s are not independent. In general, X;’s will not be independent, but the mean formula
doesn’t care!



Conditioning of Random Variables

Conditioning on random variables is similar to conditioning on events, where P(X =k | A) = W. In the
random variable case, P(X =k | Y = m) = W = PX|Y<k | m) Note that Px|y<k‘ | m) is referred to as

the conditional PMF of X given Y.

Incidentally, X | Y is just another random variable! How do we know? Because P(X |Y) > 0,and ), Pxy(z | y) =

Px.y(zy) _ _ _
Yo Th T = A e DXy (@) = pig Pr(y) = 1

Independence of Random Variables

Independence of random variables is similar to independence of events. If X and Y are independent random variables,
Px y(z,y) = Px(z)Py(y) V x,y. This generalizes to more than two random variables.

If X and Y are independent, then E[XY] = E[X]E[Y]. This often comes in handy!
Proof. BIXY] =32, 30, xyPxy (x,y) = 3., 30, wyPx (2) Py (y) = (02, Px (1)) (22, y Py (y)) = E[X]E[Y]

Variance

As we’ve seen, the mean can be used as a single descriptor for a distribution. But it doesn’t tell us the whole story.
Another quantity we might ask for is the spread — maybe as the variance. The variance of a random variable X is
defined as var(X) = E[(X — E[X])?] = E[X?] — E[X]?.

Some “obvious” facts about the variance:
e var(aX) = a*var(X)
e var(b) =0 (where b is a constant)
e var(aX + b) = a?var(X)

Also potentially important: var(X — E[X]) = var(X). The variance doesn’t change if you strip the mean!

If X; and X5 are independent random variables s.t. X = X; 4+ X, then var(X) = var(X;) + var(Xsz). If X and
Y are dependent, var(X) = var(X;) + var(Xsz) + 2(E[XY] — E[X]E[Y]) (where E[XY] — E[X]E[Y] is defined as the
covariance between X and Y). We don’t care about independence or dependence for the mean case, but we do care
for the variance case!

Ezample: variance of a Bernoulli random wvariable. X ~ Bin(n,p). What is its variance? We know that X =
X1+ X2 + ... + X,,, where X; ~ Bernoulli(p) i.i.d. Since the random variables are independent, we have var(X) =
n - var(Xy). So what is the variance of X717 (X; = 1 with probability p, and 0 with probability (1 — p).) It follows
that var(X;) = E[X?] — E[X1])? = p — p? = p(1 — p), and therefore var(X) = n - var(X;) = np(1 — p).

Geometric Distribution

Example: the St. Petersburg Paradoz. Let’s play a game. I will pay you 2¥, where k is the number of flips of a fair
coin it takes to get a heads. Thus Y = 2% where X ~ Geometric(%). For example, TTTH = Y = 2* =16, and
the payout of TTTH would be $16.

Paradoxically, the expected payout is infinite!

E[Y] = ifp(x =k)= izkz—k = i1 = 0
k=1 k=1

k=1



In general, X ~ Geom(p) is a random variable. It is the “time to first success” random variable, so it often tells
a nice story — e.g. first time to flip a heads, when flipping a coin independently with P(H) = p on each flip (i.i.d.
trials). In this example, TTTH = X =4.

What is the PMF? (Visualize the story!) We find that the PMF is described by

P(X =k)=(1-p)F1p, k=1,2,..
P(X > k)= (1-p), k=1,2,..
P(X <k)=1-(1-p)F, k=1,2, ..

Note: P(X < k) is the CDF (the cumulative distribution function).

What is E[X]? We will explore three methods of deriving the expectation (just because Prof. Ramchandran can).

Deriving E[X] (Method I: Naive)

E[X]

i k(1 —p)*'p
k=1
. )kfl

ka(l

1
Note that Y ;2 a* =1/(1 —a) if |a| < 1.
Let f(p) = Yopey(1—p)F = S50y (1 = p)F — 1= 02 2. Then f/(p) = — 352, k(1 —p)h~t = 222020 = 1.

oo

EX]=p) k(1-p)k'= %

k=1

Deriving E[X] (Method II: Tail Sum Formula)

The tail sum formula (TSF) is defined as follows: if X > 0, E[X] = >"7, P(X > k).
We thus have E[X] = Y72 (1 —p)F~1 = %,
Proof of the TSF:

Note: replacing k£ with a sum of k ones is an example of lifting. Lifting is “when you go to a higher level and you
sort of see everything.” Also, to quote Prof. Ramchandran, “when you have double summations, the first thing you
should do is switch the order.”



Deriving E[X] (Method III: Conditioning and “Renewal”)

Here, we exploit the memorylessness property of the geometric distribution Geom(p).

Theorem (the memorylessness property). P(X >n+m | X >n) = P(X >m), n,m > 0.

Motivating question: if we’ve already waited n trials without success, what is the chance we’ll wait m more trials
without success? The idea is that the geometric distribution doesn’t care how much we’ve failed so far — wherever
we are, we've learned nothing since we started.

Proof.
_P(X>n+mX>n) PX>n+m) (1-p"tm m B
LHS = PX > 1) =T PXsn a-pr =(1-p™=PX >m)=RHS
Thus:
E[X] = E[X|X = 1]P(X = 1) + E[X|X > 1]P(X > 1)
=EX|X=1P(X=1)+(1+E[X])P(X >1) (due to memoryless property)

=1-p+(1+EX])1-p)

Solving, we have

Coupon Collection

Example: the coupon collector problem. We need to get one of each coupon from a set of n coupons. We have to buy
cereal boxes to get these coupons. What is the expected number of cereal boxes we’ll have to purchase in order to
collect all n distinct coupons? (In other words, what is E[# cereal boxes needed to buy n distinct coupons]?)
e Let X = time to get n coupons.
e Let X; = time to get the first distinct coupon.
— We have E[X;] = 1, for obvious reasons.
e Let X5 = time to get the second distinct coupon, after getting the first.

— We have E[X,] = geometric with distribution P(get second | got first) = =1, hence E[X,] = -2

n—1

In general,

Summing these all up, we arrive at
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