
CSE 276A:

Introduction to Robotics

Lecturer: Henrik Christensen

Notes by Owen Jow

1 Mobile Robots 10/08/20

1.1 Kinematic Models

1.1.1 Differential Drive

In a differential drive system, there is a left wheel and a right wheel (both typically facing forward)
which can be controlled independently. If you drive one wheel in one direction and the other wheel
in the other direction, you can make the robot rotate in place. The wheels need not actually yaw!

If the angular velocities of the left and right wheels are equal, the robot will move forward/backward.
If the angular velocities of the left and right wheels are opposite, the robot will rotate in place.

1.1.2 Bicycle Model

In the kinematic bicycle model, the rear wheels control the velocity of the robot and the front wheels
control the steering angle. You can approximate this type of setup as a bicycle (drive with the rear,
steer with the front). This is the more typical model for a car.

2 Visual Servoing 11/03/20

Use visual information to control the motion of a robot.

2.1 Position-Based Visual Servoing (PBVS)

Estimate the 3D pose of landmark object(s) with respect to the camera. Then run controller.

2.2 Image-Based Visual Servoing (IBVS)

Don’t estimate the 3D pose of the object or the camera – just go by the image. Move the camera1 so
that certain feature points (in the image) go to the places (in the image) we want them to go.

1Assumption: “eye-in-hand” camera placement, where the camera is attached to the moving robot.
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The relationship between feature point motion and camera motion is
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ṗ = J(u, v, Z)q̇

where u and v are the pixel coordinates (relative to the principal point) of a feature point, u̇ and
v̇ represent the change in pixel coordinates, f is the focal length, Z is the depth of the 3D point
corresponding to (u, v), and (v, ω) are the translational and angular velocities of the camera.

J is the image Jacobian. It maps camera velocity to pixel velocity.

With n feature points, ṗ1

...
ṗn

 =

J(u1, v1, Z1)
...

J(un, vn, Zn)

 q̇

Thus we can figure out how to move the camera as

q̇ = λ

J(u1, v1, Z1)
...

J(un, vn, Zn)


† p∗1 − p1

...
p∗n − pn


where λ is an arbitrary scaling factor and p∗i is the target location for each feature point pi.

Note: to solve for q̇, you need to know the focal length f , the principal point, and the depth Zi for
each feature point pi. You can get the focal length and the principal point from camera calibration,
and the depth from an arbitrary estimation technique without worrying too much.2

3 SLAM 11/05/20 - 11/10/20

3.1 Kalman Filter

Estimate (in real time) the state of a dynamic system given noisy observations.3

Imagine an HMM graph where, at each time step, a state emits an observation and feeds into
the state at the next time step. Under the assumptions of a linear dynamical system and Gaussian
random variables, and given (1) the previous state estimate, (2) the control input, and (3) the current
observation, a Kalman filter can estimate the current state in a predictive-corrective fashion.

2Apparently, IBVS is quite tolerant to error in Z.
3“Filter out the noise in the information to get the underlying true state.”
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3.1.1 Linear Dynamical System

Let

• st denote the state at time t. [n× 1]

• ot denote the observation at time t. [m× 1]

• ut denote the control input at time t. [k × 1]

The Kalman filter assumes a linear mapping from st−1 to st and from st to ot:

st = Fst−1 + Gut−1 + wt

ot = Hst + vt

where

• F is an n× n matrix mapping st−1 to st in the absence of external influence or noise.

• G is an n× k matrix mapping the control input ut−1 to its effect on st.

• H is an m× n matrix mapping st to ot in the absence of noise.

• wt ∼ N (0,Q) is an n× 1 Gaussian random variable representing process noise.

– Q is the n× n process noise covariance matrix.

• vt ∼ N (0,R) is an m× 1 Gaussian random variable representing observation noise.

– R is the m×m observation noise covariance matrix.

The F, G, H, Q, and R matrices are assumed to be time-independent.

3.1.2 Kalman Filter

At each time step, the Kalman filter predicts the current state based on previous information (“how
did we expect the system to evolve?”), and then corrects that prediction given the current observation
(“how closely does the actual observation agree with the observation we expected?”)

It maintains an estimate st of the state, and the covariance matrix Σt associated with that estimate.
Initialize s0 and Σ0, and then perform the following update at every time step...

3.1.3 Prediction Step

ŝt = Fst−1 + Gut−1

Σ̂t = FΣt−1F
> + Q

3.1.4 Correction Step

Kt = Σ̂tH
>(HΣ̂tH

> + R)−1

st = ŝt + Kt(ot −Hŝt)

Σt = (I−KtH)Σ̂t

Note: I is the n×n identity matrix, Kt is the “Kalman gain,” and (ot−Hŝt) is the error signal.
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3.1.5 Extended Kalman Filter

The extended Kalman filter is able to perform state estimation for nonlinear dynamical systems.

3.1.6 Kalman Filter Versus Particle Filter

The Kalman filter is a unimodal framework (one state estimate and associated uncertainty); the
particle filter can maintain many different hypotheses (one for each particle). Also, the Kalman
filter assumes Gaussianity, whereas the particle filter can approximate any probability distribution.

3.2 Localization

Localization: given a model/map of the environment, a kinematic/dynamic model for the robot,
a set of sensors to detect features, and a strategy to associate features with the environment model,
estimate the robot pose (position and orientation). “Where is the robot in a map of the world?”

3.2.1 Kalman-Filter-Based Localization

Let st denote the pose at discrete time step t. Approximate P (st) by a multivariate Gaussian with
covariance matrix (uncertainty estimate) Σt. Update estimates of st and Σt using a Kalman filter.

3.3 Mapping

Mapping: given a kinematic/dynamic model for the robot, a set of sensors to detect features, a
strategy for propagating uncertainty over time, a data association4 strategy, and knowledge of the
trajectory traversed by the robot, estimate the positions of features in the environment.

3.4 Simultaneous Localization and Mapping (SLAM)

SLAM: given a kinematic/dynamic model for the robot, a set of sensors to detect features, a
strategy for propagating uncertainty over time, and a data association strategy, estimate the robot
pose and the positions of map features while traversing an environment.

3.4.1 Kalman-Filter-Based SLAM

You can perform SLAM by using a Kalman filter to continually estimate a state vector consisting
of the robot pose and the coordinates of landmarks/features in the environment.

4 Path Planning 11/17/20

Given the robot pose and a map, you can generate a representation of those things that will make
it more efficient to plan a path.5 Then you can use that representation to search for the best path.

4When you see something new, associate it with something known. “Align features you see to features you expect.”
5e.g. a Voronoi diagram, which can maximize the space between (a) obstacles and (b) the robot as it moves
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5

http://www.hichristensen.com/CSE276A-20
https://robotacademy.net.au/lesson/image-based-visual-servoing
https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://www.iri.upc.edu/people/jsola/JoanSola/objectes/curs_SLAM/SLAM2D/SLAM%20course.pdf

	Mobile Robots 10/08/20 
	Kinematic Models
	Differential Drive
	Bicycle Model


	Visual Servoing 11/03/20 
	Position-Based Visual Servoing (PBVS)
	Image-Based Visual Servoing (IBVS)

	SLAM 11/05/20 - 11/10/20 
	Kalman Filter
	Linear Dynamical System
	Kalman Filter
	Prediction Step
	Correction Step
	Extended Kalman Filter
	Kalman Filter Versus Particle Filter

	Localization
	Kalman-Filter-Based Localization

	Mapping
	Simultaneous Localization and Mapping (SLAM)
	Kalman-Filter-Based SLAM


	Path Planning 11/17/20 

