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1 Radiometry

From a computer graphics perspective, we can think of light as visible electromagnetic radiation
(EMR), i.e. EMR with wavelengths between (about) 400 and (about) 700 nm. Property-wise, we’re
mostly concerned with wavelengths and amount of energy transmitted; there are many other proper-
ties of light such as polarization, quantum effects, and wave behavior which we usually ignore.

Radiometry is a system for measuring light as physical quantities such as radiance, irradiance, etc.
It accounts for both spatial and angular properties of light, i.e. quantities are often parameterized
or defined in terms of positions and directions.

1.1 Solid Angles

To discuss the angular distribution of light, we must first define the concept of solid angles.
Let’s start with angles, of which solid angles are the 3D analogue.

r
θ

l

Here, the angle θ is l/r radians. On a unit sphere, it is a cut of the circumference.

r

A

Here, the solid angle ω is A/r2 steradians (sr). On a unit sphere, it is a cut of the surface area,
meaning a solid angle is equivalent to projected area on the surface of a unit sphere. It might
represent a bundle of rays coming out of the center of the sphere around a direction. With a total
surface area of 4πr2, a sphere contains 4π sr.
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We can define a direction on a sphere in terms of spherical coordinates (θ, φ), where θ is the elevation
(angle down from the north pole) and φ is the azimuth (angle to the left of an arbitrary point).
Depending on you define the x, y, and z-axes, a point (x, y, z) on the unit sphere can be defined as
(sin θ cosφ, sin θ sinφ, cos θ) (meaning, e.g., z = 0 on the equator where θ = π/2).

Note: if θ is the angle between a surface normal and the direction of a light source, we’ll likely
have to apply a cos θ term as well, something like dω cos θ. (We get the most light when it’s falling
perpendicularly on the surface, i.e. θ = 0, and less and less as the angle deviates from this.)

With integration in mind, we might also want to define the concept of a differential solid angle
dω = dA/r2, where dA, a rectangular differential area on a sphere with radius r, obtained by varying
θ by dθ and φ by dφ, is (r dθ)(r sin θ dφ) = r2 sin θ dθ dφ. And then dω = sin θ dθ dφ.

Side note: this is equivalent to −dz dφ, as shown –

(sin θ dθ) dφ = −d(cos θ) dφ

= −dz dφ

With dω, we can perform integration on spheres.
For example, we can confirm that the total solid angle of a sphere S2 is 4π:∫

S2

dω =

∫ 2π

φ=0

(∫ π

θ=0

sin θ dθ

)
dφ

= 2π

∫ π

0

sin θ dθ

= −2π cos θ
∣∣∣π
0

= 4π

1.2 Radiance

Radiance is the physical quantity associated with light along a ray. It is power per unit (projected)
area flowing through a surface at x, per unit solid angle in the direction ω. Its units are W

m2·sr .

It is denoted L(x, ω), which by no coincidence is the same as the 5D plenoptic function (note: x
is 3D, ω is 2D). The plenoptic function, i.e. the light field, describes all of the radiance in the
environment (amount of light flowing in every direction through every point), and in fact every
other radiometric quantity can be derived from radiance. If you know the radiance distribution in
the scene, you can get the irradiance, the radiant exitance, etc.

Notice that we refer to “projected” area. The surface at x (if there is one) might be oriented any
which way, but radiance is measured perpendicularly to the ω direction, so we only care about flux
flowing through the perpendicular component of the (hypothetical) surface. If the actual passed-
through area is dA, then the perpendicular component is dA cos θ.

L(x, ω) =
d2Φ

dω dA cos θ

d2Φ = L(x, ω) dω dA cos θ “directional power arriving at surface”

The total amount of flux (power) through a surface can be determined by integrating over the entire
surface area and over all solid angles of light:

Φ =

∫
A

∫
Ω

L(x, ω) dω dA cos θ
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1.2.1 Radiance Properties

• In free space, radiance remains constant along lines [i.e. as it travels along a ray].

• Sensor response is proportional to radiance; a pixel intensity corresponds to the radiance of
light at that pixel (times a throughput scaling factor).

1.3 Irradiance

Radiance L = d2Φ
dω dA cos θ is flux per unit area per unit solid angle. Irradiance E = dΦ

dA is flux per

unit area, and represents all light falling on a surface at a point. Its units are W
m2 . Note that radiance

is the derivative of irradiance; namely it is irradiance per unit solid angle.

Li(x, ω) =
dE(x, ω)

dω cos θ
dE(x, ω) = Li(x, ω) dω cos θ

dE is the power per unit area given by direction ω. The i means “incident.” To obtain irradiance
E, we can integrate this over all directions.

For example, total irradiance (integrated over a hemisphere H2) is

E =

∫
Li(x, ω) cos θ dω

=

∫ 2π

φ=0

∫ π
2

θ=0

Li(x, θ, φ) cos θ sin θ dθ dφ

Note: we can photograph a mirror sphere and obtain the distribution of incident radiance Li(x, θ, φ)
for any θ, φ as an illumination environment map. This allows us to quickly compute the irra-
diance integral above for a surface oriented in any direction (giving an irradiance environment
map). The former map is particularly useful for reflective surfaces; the latter for diffuse surfaces.
This method assumes faraway lighting; the ball’s position in the scene shouldn’t affect the radiances.

If Li(x, θ, φ) is constant, i.e. the same amount of light is coming in from each direction, then

E =

∫ 2π

φ=0

∫ π
2

θ=0

L cos θ sin θ dθ dφ

= 2πL

∫ π
2

0

cos θ sin θ dθ

= 2πL

∫ 1

0

u du (for u = sin θ, du = cos θ dθ)

= 2πL

(
1

2

)
= πL

[
W/m2

]
If we have a uniform incoming radiance of 1 W

m2·sr , the resulting irradiance is π W
m2 . Now, for a

diffuse surface, reflected light (in every direction) is proportional to irradiance i.e. as ρE.

ρ is a constant Lambertian coefficient, technically the surface’s BRDF, which controls how much
light is reflected in any one direction. For energy conservation, i.e. to reflect at most 1 W

m2·sr back
out, the maximum Lambertian value possible is ρmax = 1

π .
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1.4 Radiant Exitance

Radiant exitance, also known as radiosity, is the power per unit area leaving the surface. Its units
are the same as irradiance (the only difference is that irradiance is for light arriving, and radiant
exitance is for light leaving).

2 BRDFs

Different surfaces reflect light in different ways. As examples,

• ideal specular (mirror) reflects in mirror direction

• ideal diffuse (matte) reflects equally in all directions

• specular (glossy) reflects in lobe generally around mirror direction

The BRDF, or bidirectional reflectance distribution function, gives us the fraction of light from an
incident direction ωi which is reflected in an outgoing direction ωr. It is denoted f(ωi, ωr).

Concretely, the BRDF is a material-specific ratio between outgoing radiance and incoming irradiance.

dLr(ωr) = f(ωi, ωr)dEi(ωi)

dLr(ωr) = f(ωi, ωr)dLi(ωi) cos θi dωi

f(ωi, ωr) =
dLr(ωr)

dEi(ωi)

Since ωi and ωr are parameterized by two angles each, the BRDF is a function of four variables.

f(θi, φi, θr, φr) you might see it written like this

2.1 BRDF Properties

• Linearity. If you have a material with a diffuse component and a specular component, you
can obtain the net BRDF by summing the individual BRDFs.

• Helmholtz reciprocity. You can swap incoming and outgoing directions: f(ωi → ωr) =
f(ωr → ωi). Note: while the BRDF is symmetric, the net lighting effect typically isn’t, e.g. it
won’t make dLr symmetric because dLr includes the cosine term.

• Isotropy. Many BRDFs are isotropic (can rotate surface around the normal without changing
appearance). Then what matters is not the actual values of φi and φr, but the relative
difference. In other words, f(θi, φi, θr, φr) = f(θi, θr, φr − φi).

• Energy conservation. The radiant exitance should not exceed the incoming irradiance.

2.2 Reflection Equation

The reflection equation tells us the reflected light as a function of the incident light. (Basically, we
just integrate dLr to get Lr.)

Lr(x, ωr)︸ ︷︷ ︸
reflected light

= Le(x, ωr)︸ ︷︷ ︸
emission

+

∫
Ω

Li(x, ωi)︸ ︷︷ ︸
incident light

f(x, ωi, ωr)︸ ︷︷ ︸
BRDF

cos θi dωi
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Emission term. Some surfaces in the scene should emit light.

2.3 BRDF Models

2.3.1 Ideal Diffuse Reflectance

• The reflected light in one direction is fE.

• Total reflected light in all directions is πfE, or πfE cos θ by Lambert’s cosine law.

• Let the albedo (ratio of reflected radiance to incident irradiance) be ρ = πfE
E = πf .

– Total reflected light becomes ρE cos θ.

– The BRDF becomes ρ
π , i.e. the diffuse albedo ρ ∈ [0, 1] divided by π.

2.3.2 Fresnel Reflectance

In the Fresnel reflectance model, the specular reflection of a surface depends on the viewing direction.
In the example of the book on the table, the reflectivity increases (i.e. it appears to reflect more of
the world) as you look at the surface from an increasingly grazing angle.

2.3.3 Torrance-Sparrow Reflectance

A compound specular reflectance model which includes a Fresnel term F , a geometric attenuation
factor G, a distribution term D, and cosine terms which account for foreshortening.

f =
FGD

4 cos θi cos θr

Actually, the above BRDF is the general form for microfacet reflection models (I haven’t fully
specified the F , G, or D terms e.g. for Torrance-Sparrow).

2.3.4 Empirical

We can define an empirical BRDF model by building a 4D table using measurements from a gantry.
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