CSE 252B Lecture 03 Owen Jow | January 14, 2019

2D LINES

inhomogeneous line equation: $a\tilde{x} + b\tilde{y} + c = 0$ homogeneous line equation: $a\frac{x}{w} + b\frac{y}{w} + c = 0 \Rightarrow ax + by + cw = 0$

or: $x^T \underline{\ell} = 0$ (with $\underline{\ell}$ a homogeneous entity)

$$X = \begin{bmatrix} x \\ y \\ w \end{bmatrix}, \quad \underline{I} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \underline{\eta} \\ \overline{c} \end{bmatrix}$$

Note: distance from origin is $\frac{c}{\|n\|}$ Line at infinity: $\underline{L}_{00} = (0,0,1)^{T}$

3D PLANES

plane equation: ax+bY+cZ+dT= D

 $\rightarrow \pi^T X = 0$

where $\underline{\pi} = (\alpha, b, c, d)^T = (\underline{n}^T, d)^T$

Plane at infinity: $T_{\infty} = (0, 0, 0, 1)^{T}$

2D POINTS AND LINES

 $\begin{cases} X^T L = 0 & \text{iff } X \text{ is on the line } L \\ L^T X = 0 & \text{otherwise} \end{cases}$

e.g.
$$\underline{x}_{1}^{T}\underline{L}=0$$
 $\underline{x}_{2}^{T}\underline{L}=0$
 \underline{L}

$$\begin{bmatrix} \underline{x}_{1}^{T} \\ \underline{x}_{2}^{T} \end{bmatrix} \underline{\mathcal{L}} = \underline{Q} \quad ; \quad \underline{\mathcal{L}} \quad \text{is night null space of} \quad \begin{bmatrix} \underline{x}_{1}^{T} \\ \underline{x}_{2}^{T} \end{bmatrix}$$

$$\begin{bmatrix} \underline{x}_{1}^{T} \\ \underline{x}_{2}^{T} \end{bmatrix} \quad \text{is left null space of} \quad \underline{\mathcal{L}}$$

JOIN of points

L= K1 x K2 (only valid b/c 3-vectors)

= $[\underline{x}_1]_x \underline{x}_2$ (cross product is null space / orthogonal vector to \underline{x}_1 and \underline{x}_2)
= $(\underline{x}_1^T [\underline{x}_2]_x)^T$

 $[L]_{x} = \underline{x}_{1} \underline{x}_{2}^{T} - \underline{x}_{2} \underline{x}_{1}^{T} \qquad ; \quad \text{for} \quad \underline{a} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}, \quad \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0 \end{bmatrix}$

skew-symmetric cross product martix

INTERSECTION of lines

Given two lines,
$$\begin{bmatrix} \mathcal{L}_{1}^{T} \\ \mathcal{L}_{2}^{T} \end{bmatrix} \times = 0$$

find the & S.t. $\begin{bmatrix} \mathcal{L}_{1}^{T} \\ \mathcal{L}_{2}^{T} \end{bmatrix} \times = 0$
 $= \mathcal{L}_{1} \times \mathcal{L}_{2}$
 $= (\mathcal{L}_{1}^{T} [\mathcal{L}_{2}]_{x})^{T}$

3D POINTS AND PLANES

$$\begin{cases} X^T \overline{L} = 0 \\ \overline{L}^T X = 0 \end{cases} \text{ iff } X \text{ is on the 3D plane } \overline{L}$$

Points on a plane

<u>Planes</u> intersecting at a point

$$\underline{\mathcal{L}}_{1}^{T} \underline{X} = 0$$
planes that

 $\underline{\mathcal{L}}_{2}^{T} \underline{X} = 0$
intersect at a point

$$\underline{\mathcal{L}}_{3}^{T} \underline{X} = 0$$

$$\begin{bmatrix}
\underline{\mathcal{L}}_{1}^{T} \\
\underline{\mathcal{L}}_{2}^{T}
\end{bmatrix} \underline{X} = 0$$

20 CONIC SECTIONS

general equation:
$$a\tilde{x}^2 + b\tilde{x}\tilde{y} + c\tilde{y}^2 + d\tilde{x} + e\tilde{y} + f = 0$$
 (inhomog. coords)
 $a\tilde{x}^2 + b\tilde{x}\tilde{y} + c\tilde{y}^2 + d\tilde{x}w + e\tilde{y}w + fw^2 = 0$ (homog. coords)

for a point $(x,y,w)^T$ on the conic,

$$[x \ y \ w] \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$$

$$x^{T} C x = 0$$
"point conics"
$$point must lie on conic for this to be true!$$

(is 5 DOF homogeneous entity (defined up to scale)

CONICS AND DUAL CONICS

XTCX = O gives points on C

-pole: point

-polar line: line which relates to pole according to the conic

- -if the point is on the conic, the polar will be a line tangent to that point
- -if the point is inside the conic, the polar will be a line artside of the conic
- if the point is outside the conic, draw two lines and connect the tangent points to find the polar

L = Cx: polar line of x w.r.t. C

provides fast way to get tangent line of conic: just pick point on conic and you'll get a tangent line & from this

DUAL CONICS

just as points and hyperplanes are geometric duals, conics and dual conics are duals

dual conics are "line conics"

$L^T C^* L = 0$ where C^* describes a dual conic

- -lines are tangent to C
- -the conic is defined by an infinite # of lines tangent to it, which "carve it out" in space

 $\underline{x} = \underline{C}^* \underline{L}$: pole of \underline{L} w.r.t. \underline{C}

note that
$$\underline{C}^*$$
 is a matrix of cofactors of \underline{C} ; $\underline{C}^* = \underline{C}^{-1}$ (up to scale), $\underline{C} = (\underline{C}^*)^{-1}$ (up to scale)

The center of the conic is the pole of the line at infinity $\mathcal{L}_{\infty} = (0, 0, 1)^{T}$: $\angle center = \mathcal{L}^{*} \mathcal{L}_{\infty}$

meaning there is an easy way to find the center of an ellipse/conic: just invert C and multiply by L_{∞} !

COFACTOR AND ADJOINT MATRICES

 $\underline{M}^* = \det(\underline{M}) \underline{M}^{-T}$ is a matrix of cofactors of \underline{M} = $\operatorname{adj}(\underline{M})^{T}$

Radjugate (or classical adjoint) of a matrix

$$\left(\mathbf{M}^{-\mathsf{T}} = \left(\underline{\mathbf{M}}^{-\mathsf{I}}\right)^{\mathsf{T}} = \left(\underline{\mathbf{M}}^{\mathsf{T}}\right)^{-\mathsf{I}}\right)$$

so the "up to scale"s are because $\underline{M}^* = \det(\underline{M}) \underline{M}^{-1}$

also
$$\det(\underline{M}) \underline{M}^{-T} = \operatorname{adj}(\underline{M})^{T}$$

$$\underline{M}^{-1} = \frac{1}{\det(\underline{M})} \operatorname{adj}(\underline{M})$$

if M is symmetric (note that conics are symmetric),

$$\underline{M}^* = \det(\underline{M}) \underline{M}^{-T}$$
= $\det(\underline{M}) \underline{M}^{-1}$
= $\det(\underline{M}) = \det(\underline{M})$; compute this if \underline{M} is singular

QUADRICS AND DUAL QUADRICS

<u>quadric</u>: quadratic surface (scaling conics up in dimension)

$$\underline{X}^{\mathsf{T}}\underline{Q}\underline{X} = 0$$
 (analogue of $\underline{X}^{\mathsf{T}}\underline{C}\underline{X} = 0$)

where X is a point on the quadratic surface Q

 $\mathbb{Z} = \mathbb{Q}X$: polar plane of X w.r.t. quadric \mathbb{Q}

if X is on Q surface, π is tangent plane to that point

now, instead of lines carving out a conic section, we have a bunch of (hyper)planes carving out a quadric

$$\underline{\pi}^{\mathsf{T}} \underline{Q}^{\mathsf{X}} \underline{\pi} = 0$$
 planes tangent to \underline{Q}
 $\underline{X} = \underline{Q}^{\mathsf{X}} \underline{\pi}$ pole of $\underline{\pi}$ w.r.t. \underline{Q}

the center of the quadric is the pole of plane @ infinity $\underline{\mathcal{T}}_{\infty} = (0,0,0,1)^{\mathsf{T}}$

LINES IN 3D

Plücker line coordinates

Plücker matrix homage to original paper
$$\begin{bmatrix}
0 & l_{12} & l_{13} & l_{14} \\
-l_{12} & 0 & l_{22} & -l_{13}
\end{bmatrix}$$

if you have <u>L</u>, there are corresponding line coords

3D LINES

can take dual of Plücker line matrix

 $\underline{L}^*\underline{X} = 0$, $\underline{X}^T\underline{L}^{*T} = \underline{Q}^T$ iff point \underline{X} is on line \underline{L} $\underline{L}\underline{\pi} = 0$, $\underline{\pi}^*\underline{L}^T = \underline{Q}^T$ iff line \underline{L} is on plane $\underline{\pi}$

Two planes intersect at a line

$$\underline{\underline{L}}_{4\times4} \left[\underline{\mathcal{T}}_{1} \right]_{4\times2} \underline{\mathcal{T}}_{2} = \underline{\underline{O}}_{4\times2}$$

two columns of <u>null space</u>: two planes that intersect at line

Two points on line

$$\underline{L}^* \left[\underline{X}_2 \mid \underline{X}_1 \right] = \underline{Q}$$

Join of two points

$$\underline{\underline{L}} = \underline{X}_1 \ \underline{X}_2^{\mathsf{T}} - \underline{X}_2 \ \underline{X}_1^{\mathsf{T}}$$

 $\underline{L}^{*} = \begin{bmatrix} 0 & l_{34} & l_{42} & l_{23} \\ -l_{34} & 0 & l_{14} & -l_{13} \\ -l_{42} & -l_{14} & 0 & l_{12} \\ -l_{23} & l_{13} & -l_{12} & 0 \end{bmatrix}$

Intersection of line and plane

 $X = \underbrace{L}_{4\times 4} \underbrace{\pi}_{4\times 1}$ fast way to intersect line and plane; makes this all worth it (from a graphics perspective)

direction d of line

$$\underline{X}_{\infty} = \underline{L}\underline{T}_{\infty}$$

$$(\underline{d}^{\mathsf{T}}, 0)^{\mathsf{T}} = \underline{L}(0, 0, 0, 1)^{\mathsf{T}}$$

LINE AS PENCIL OF POINTS

Given two distinct points x, & x2 on a line,

~ (any dim, but here 2D)

 $\lambda \underline{x}_1 + \mathcal{M} \underline{x}_2$ is the <u>percil of points</u> on the line another way to parameterize a line which is defined by the join of points

Different ways to represent this (all valid)

$$\underline{x}(\lambda,\mu) = \lambda_{\underline{x}_1} + \mu_{\underline{x}_2}$$

$$\chi(\lambda) = \lambda \underline{\chi}_1 + (1-\lambda)\underline{\chi}_2$$

$$\Sigma(\lambda) = X_1 + \lambda D$$
 where $D = (d^T, 0)^T$ with direction d

inhomog. $\tilde{x}(\lambda) = \tilde{x}_1 + \lambda d$ where d is a direction vector

LINE - CONIC INTERSECTION

(line will intersect at 0,1, or 2 points)

1. Determine 2 points x_1 and x_2 on the line ℓ .

$$\underbrace{\mathcal{L}^{\mathsf{T}}\left[\underline{x}_{1} \mid \underline{x}_{2}\right] = \underline{Q}^{\mathsf{T}}}_{\mathbf{L}^{\mathsf{T}}\underline{M}} = \underline{Q}^{\mathsf{T}} \qquad \underline{\underline{Q}}^{\mathsf{T}} \qquad \underline{\underline{Q}}^{\mathsf{T}} \qquad \underline{\underline{Q}}^{\mathsf{T}} \qquad \underline{\underline{M}}^{\mathsf{T}}\underline{\mathcal{L}} = \underline{Q}$$

2. Plug into "pencil of points" representation.

$$\underline{x}(\lambda) = \lambda \underline{x}_1 + (1 - \lambda)\underline{x}_2$$

3. Plug into conic equation.

$$\underline{x}^{\mathsf{T}} \underline{\mathcal{L}} \underline{x} = 0$$

$$\underline{x}(\lambda)^{\mathsf{T}} \underline{\mathcal{L}} \underline{x}(\lambda) = 0$$

4. Solve for λ .

There will be 0, 1, or 2 solutions, which represent the points of intersection between the line and the conic.

Note that our $\underline{x}(\lambda)$ equation gives us a point for each value of λ we put in.

2 solutions λ_1 , λ_2 , of which 0, 1, or 2 are real

5. Substitute the λ s back into the $\chi(\lambda)$ equation.

This will give you the intersection points on the conic.

$$\underline{X}_{c_1} = \lambda_1 \underline{X}_1 + (1 - \lambda_1) \underline{X}_2$$

 $\underline{X}_{c_2} = \lambda_2 \underline{X}_1 + (1 - \lambda_2) \underline{X}_2$

$$\begin{cases}
2 & \text{intersection points} \\
2 & \text{otherwise}
\end{cases}$$