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1 Imaging Geometry

The focus of this course is imaging geometry, particularly involving multiple views. Essentially,
we want to understand the geometry that links 2D images to the 3D world, and 2D images to other
2D images of the same 3D scene. With this knowledge, we can perform e.g. 3D reconstruction from
images (which is probably the main application space where this course is concerned).

We will start with the case of one view (one image), but ultimately will study scenarios in which we
have anywhere from 1 to n views of a scene. We’ll also study both the calibrated and uncalibrated
settings. In the calibrated case, we know the internal camera properties (intrinsics) such as focal
length and principal point (e.g. via EXIF tags) and are able to reconstruct 3D up to a scaling
factor. In the [more challenging] uncalibrated case, we know nothing about the cameras and can
only perform 3D reconstruction up to a projective transformation1 unless we estimate the intrinsics.
If we work in projective space everything will be very distorted, but the math checks out.

Note that in spite of the name “imaging geometry,” we really want to drop the “image” part as
quickly as possible. Instead of images, we want to work with geometric primitives such as points,
hyperplanes, and hyperquadrics.2 We also want to work with the duals of these things.3

To get to geometric primitives, we typically extract distinct, photo-identifiable feature points from
each image. Again, note that each 2D feature point will correspond to both a 3D point (2D-3D
correspondence) and 2D points in other views (2D-2D correspondence). In this class, we will use
simple feature detectors/matchers in order to learn how to deal with noise (i.e. how to perform
outlier rejection based on imaging geometry constraints).

We use the points and correspondences to estimate some model, e.g. a geometric transformation.

• Euclidean (rigid body) transformation: a rotation and translation. (3 DOF)4

• Similarity transformation: a rotation, scaling, and translation. (4 DOF)5

• Affine transformation: a linear transformation6 and translation. (6 DOF)7

• Projective transformation (homography): 3× 3 homogeneous matrix. (8 DOF)8

1But then, using auto-calibration, we can transform our reconstruction in projective space into metric space.
2Hyperquadrics: a generalization of conics in n-dimensional space. (In 3D, conics are quadrics.)
3Just as points and hyperplanes are duals of each other, hyperquadrics have duals too.
4[assumes 2D case] angle for 2D rotation (1 DOF), translation in two dimensions (2 DOF)
5[assumes 2D case] Euclidean (3 DOF) plus scale factor (1 DOF)
7[assumes 2D case] 2× 2 linear transformation matrix (4 DOF), translation in two dimensions (2 DOF)
8[assumes 2D case] 3× 3 matrix (9 DOF) minus one DOF because “up to scale”
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1.1 Projection

Formally, projection involves the transformation of an entity from one dimensionality to another
dimensionality, where the second dimensionality is less than or equal to the first (e.g. 3D → 3D, or
3D→ 2D). Back-projection involves a transformation from a lower dimensionality to a higher dimen-
sionality. However, there is an ambiguity in doing this (e.g. a 2D image point’s analogue in the world
can lie anywhere along the 3D ray passing through the point and the center of projection).

To resolve this ambiguity, we normally need more than one image. Then, e.g. in stereo geometry, we
can triangulate – compute the 3D point where the rays intersect. In practice, the rays will be noisy
and will miss each other, so we’ll have to do some kind of optimization (looking for the point in 3D
which minimizes distance between the rays, or which minimizes reprojection error in all images).

1.2 Nonlinear Optimization: Initialization

Typically, the success of nonlinear optimization depends a lot on the initialization. We’ll generally
want the parameters to be initialized as close as possible to their best selves, so that it’s easier to
reach that global optimum. To initialize, we’ll usually use the estimate given by a linear optimization.

1.3 Miscellaneous

Three-View Geometry Removes a lot of ambiguity, allows for line-based reconstruction.

Stratified Reconstruction Go from projective to affine to similarity reconstruction.

Auto-Calibration Determine intrinsics from image geometry alone.

2 Homogeneous Coordinates: Notation

In effect, “homogeneous” means “defined up to a scale.” Before being introduced to homogeneous
coordinates, one generally uses inhomogeneous representations, which will be marked notationally
with tildes, e.g. in 2D an inhomogeneous point is x̃ = (x̃, ỹ)T . By contrast, homogeneous coordinates
will be unmarked, e.g. in 2D a homogeneous point will be written x = (x, y, w)T where w is the
“projective coordinate.” Then x̃ = (x/w, y/w)T and x = (λx̃, λỹ, λ)T .

One of the draws of homogeneous coordinates is that they allow us to have meaningful points at in-
finity which are transformed back and forth between non-infinite and infinite representations.

Positive infinity is defined

∞ = lim
x→0+

1

x

whereas negative infinity is

−∞ = lim
x→0−

1

x

Similarly, zero can be defined

0 = lim
x→∞

1

x

In homogeneous coordinates, a point at infinity has a zero projective coordinate. For example, the
set of 2D points at infinity is x∞ = (x, y, 0)T . The set of 3D points at infinity is X∞ = (X,Y, Z, 0)T .
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