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1 Eigenfaces vs. Fisherfaces

In the case of classification, we would like to reduce the dimensionality of our feature space in a way
that leaves only distinct, independent feature dimensions.

1.1 PCA

• We can do this via PCA by finding the directions of greatest spread (a basis), and construct-
ing/applying a matrix which represents points from the original space in the new basis.

• PCA finds the lower-dimensional space that best approximates the data in an SSD sense.

• If the number of samples is much less than the original dimensionality, use SVD for PCA.

• One problem with PCA is that lost principal components might include small details that are
important for e.g. recognition, like a small marking which doesn’t appear on most of the data.

1.2 Fisher’s Linear Discriminant

If we care about facial recognition in different lighting (which we should), it might be the case that
the first principal components capture variation more dependent on lighting, and the later principal
components capture variation less dependent on lighting.

But to be sure, we should use Fisher’s linear discriminant (FLD) to get a basis which focuses on
variations which are less lighting-dependent. This method uses two covariance matrices: one for the
between-class spread, and one for the within-class spread. In other words, we take advantage of the
supervised nature of our task to construct the subspace (by contrast, PCA operates unsupervised).

PCA maximizes scatter. FLD maximizes a ratio which is large when the numerator (projected
between-class spread) is large and/or the denominator (projected within-class spread) is small. Basi-
cally, it clusters things so that the recognition task is easy.

Also called Fisher’s linear discriminant analysis (LDA).

2 Feature Extraction

Before the explosion of deep networks, we might’ve had a long and hand-engineered feature extraction
process that went something like (1) preprocess (e.g. normalize) the image, (2) apply a filter bank
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(e.g. Gabor) to each color channel, (3) take max response within eight groups of filters to get an 8D
vector for each color channel (24D vector total), (4) convert these into bag-of-words representations,
and (5) histogram the words over image regions at different scales.

Then we might have passed the feature vectors to an SVM classifier.

A neural network will do all of this automatically.

3 Neural Networks

A single perceptron is wTx+ b. We can represent OR and AND but not XOR. With two or more layers,
we can represent XOR (and any boolean function). Then, with sufficient neurons and nonlinearities
(sigmoids, hyperbolic tangents, ReLUs), we can represent any function (universal approximation).

So representational capacity is high. But training is another matter. For training, it has been shown
that deep networks are more efficient in that they require less hidden units than shallower networks
to represent the same functions. Stack more layers!

To train, we use gradient descent12 with some loss function.

Neural networks are just learned composite functions ln(· · · l3(l2(l1(x)))). They are trained to ap-
proximate functions, i.e. they are function approximators.

1Gradient gives direction in input space that makes the output increase the most. If you change input infinitesi-
mally in the opposite direction, output will decrease. This is gradient descent (except steps are finite in GD).

2Gradient descent is nice because we only deal with first derivatives (linear in number of parameters) instead of
having to take the Hessian or something (like many other numerical optimization methods).
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