CSE 252A: Recognition Again

Lecturer: David Kriegman

Scribed by Owen Jow on November 27, 2018

1 Evaluating Classifiers

1.1 Binary

A binary classifier can be right in two ways (true positive tp, true negative tn) and wrong in two
ways (false positive fp, false negative fn). Depending on the application, it might be worse to some
degree to have false positives, worse to some degree to have false negatives, or equally bad to have
either.

Among a number of metrics built around false positives and false negatives, we can evaluate the
binary classifier in terms of precision! tp/(tp + fp) and/or recall® tp/(tp + fn).

1.2 Multiclass

We can visualize the accuracy of a multiclass classifier using a confusion matriz. In a confusion
matrix, the rows and columns represent the classification labels in the same order, and the entry at
location i, j is the proportion of times the classifier chooses label j when the answer is label i. Thus
a perfect classifier will yield Os everywhere except on the diagonal.

A confusion matrix makes it easy to see which classes are being confused for others.

2 Bayes Classifier

w; event that the object is of class 4 (cause)
x a vector of observed features (effect)
P(w;) prior probability of w;

P(x | w;) class-conditional density function

To make a decision, convert the likelihood P(x | w;) and prior P(w;) into a posterior probability:

P(w; | x):w

1“of what I say is positive, what proportion is actually positive?” / high precision — low false positive rate

2«of all of the positives, how many did I get?” / high recall — low false negative rate

If there are n categories,
n

P(x) =Y P(x | w;)P(w;)

i=1
so the denominator can be computed in terms of the distributions in the numerator.

e To obtain the likelihood and prior: determine empirically based on training data

We choose the class with the highest posterior probability P(w; | x) (MAP classification).

2.1 Analysis

The Bayes classifier is optimal, because picking anything other than what it says to pick can only
result in an identical or higher probability of error. However, it’s not really used in practice because
it’s hard to approximate P(x | w;) — especially when x is high-dimensional (need a lot of samples).

3 Alternative Classifiers

3.1 Parameterized Posterior Probabilities

We can assume a certain posterior probability model, e.g. normal distribution with mean vector and
covariance matrix, and then just estimate the parameters of the model. If x is n-dimensional, the
mean vector has n parameters and the covariance matrix has n(n+1)/2 parameters. So in this case,
the number of parameters would grow quadratically with the dimensionality of the feature space.

3.2 k-NN

Given x, look at its k nearest neighbors in the training set. Use the most common class as x’s class.

e As k — oo and the dataset expands to include more and more data, k-NN approximates the
posterior probability better and better and approaches Bayesian optimality.

3.3 SVM

With a Bayes classifier, the decision boundary between two classes is the set of values in observation
space for which the posterior probabilities of the two classes are (1) identical and (2) higher than
the probabilities of all other classes. Instead of obtaining decision boundaries as a byproduct of
computing posterior probabilities, we can imagine estimating them directly using an SVM approach.

Let’s say there are two classes, —1 and 1. We would like to find a hyperplane w”x + b = 0 which
divides the set of points (x;,y;) (where y; € {—1,1} is the class) into camps of each class. If the
data is linearly separable, we can solve for a hyperplane which maximizes the margin m

The points x; which are closest to the decision boundary (m away) are called support vectors.

3.4 Deep Network

A deep network learns class scoring functions directly, without explicitly computing any probabilities.

3.5 Dimensionality Reduction
Let’s go back to Bayesian classification for a moment. For good results, we need a good estimate of
the posterior probability P(w; | x), which we obtain via training samples.

e If we have 10,000 training samples (x; € [0,1],y;), we might approximate the likelihood by
histogramming our samples into 100 bins of width 0.01. Then, on average we have 100 samples
per bin. If one sample is mislabeled per bin, we’re losing 1% of accuracy in our likelihood model.

e In the same scenario (10,000 training samples, width 0.01 bins) except with x; € [0,1]3, there
are now 1002 bins and 0.01 samples per bin on average. Our likelihood model (and by extension
our classifier) is going to be terrible! The curse of dimensionality strikes again.

One way to make classification more tractable is to reduce the dimensionality of the feature space.

3.5.1 Linear Projection

We project x € R™ to a lower-dimensional space R™ via matrix multiply W7”x, where W € R"*™,

To determine W, we can use PCA, LDA, ICA...

3.5.2 PCA

We can look at PCA in a facial recognition setting. Our feature vectors are flattened images x; € R?

for e =1,...,n. We compute the mean vector and covariance matrix of our data as
1 n
K= n Z X
=1
1 T
= n_lz;(xi—u)(xi—ﬂ)
=

If we order the eigenvectors of X by associated eigenvalue from greatest to least, they are the mutually
orthogonal directions of greatest to least variance (spread). If we take the first k& eigenvectors, those
are the directions in which the data varies the most. We will do this, and call those eigenvectors the
principal components. They’ll form a k-dimensional basis for a new smaller feature space.

To compute this naively is intractable, since the covariance matrix might be enormous. For efficiency,
we should take a thin SVD of the d x n data matrix

| |
(1= 1) oo (%o —p)

& the singular vectors corresponding to the highest singular values will be our principal components.
Finally, regardless of how they’re computed, the principal components form the columns of W.

In facial recognition, we can project the training images and test images to a lower-dimensional space
using W (computed from training images), then use some classification method to great success.

3.5.3 LDA / Fisher’s Linear Discriminant

PCA is the best linear approximation to the data in a least-squares sense. But it doesn’t take
the discriminative nature of our task into account. If we’re trying to do recognition and not just

compression, we can project using Fisher’s linear discriminant and actually pull the classes apart
during compression. Instead of maximizing the total projected spread, Fisher’s linear discriminant
maximizes the ratio of between-class spread to within-class spread.

This makes discrimination easier.

	Evaluating Classifiers
	Binary
	Multiclass

	Bayes Classifier
	Analysis

	Alternative Classifiers
	Parameterized Posterior Probabilities
	k-NN
	SVM
	Deep Network
	Dimensionality Reduction
	Linear Projection
	PCA
	LDA / Fisher's Linear Discriminant

