
CSE 252A: Corner Detection

Lecturer: David Kriegman

Scribed by Owen Jow on November 01, 2018

1 Corner Detection

A corner is a location in an image around which there are 2+ dominant gradient directions. This is
recognizable because if you look at the corner through a window and then slightly shift the window
in any direction, its content will change significantly – as opposed to the case of a flat region, where
there’ll be no change, or an edge region, where there’ll be no change for a shift in the edge direction.

Since they are distinctive, corners make good points of interest. If we want to independently identify
points in different images and then match them, corners would be good points to identify.

Identification More concretely, a corner is a point at the center of a window in which there are
two strong but different gradient directions. In the window, we want to have a distribution of large
gradients in multiple directions. We can characterize this in terms of two numbers by fitting a zero-
centered ellipse around the (dx, dy) gradient plot and looking at the major and minor axis lengths.

We can fit an ellipse to the gradients around (x, y) by computing the below matrix of second moments:

C(x, y) =

[ ∑
x,y∈W I2x

∑
x,y∈W IxIy∑

x,y∈W IxIy
∑

x,y∈W I2y

]
where Ix, Iy are image derivatives w.r.t. x and y respectively and we sum over a small window W .
C arises as part of a quadratic approx. to the surface representing SSD window intensity change.

As a 2× 2 symmetric matrix, C can be factored via eigendecomposition as

C = R−1
[
λ1 0
0 λ2

]
R

where R is an orthogonal (rotation) matrix. This can be viewed as an ellipse with

• axis lengths
√
λ1 and

√
λ2

1

• orientation determined by R (specifically, eigenvectors are axis directions)

λi describes the amount of increase in the corresponding eigenvector direction. The λmax eigenvector
is the shift direction with the largest increase in window intensity; likewise, the λmin eigenvector is
the shift direction with the smallest increase in window intensity.

For corner detection we don’t have to look at the directions, just the eigenvalues.

1Alternatively 1/
√
λ1 and 1/

√
λ2; however, this will create an ellipse which is thin in the direction of faster change

and wide in the direction of slower change.
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If the eigenvalues are similar and both large, we have a corner because there are strong image changes
in different directions. If one eigenvalue is much greater than the other, we have an edge because
there are strong image changes in one main direction. If both eigenvalues are small, it’s considered
a “flat” region: intensity isn’t going to change much no matter which direction we shift the window.

Accordingly, we can summarize C as a single corner response value which is defined in terms of the
eigenvalues, and which encodes the idea that we want λ1 and λ2 to be large and similar.

For example,
λ1λ2 − α(λ1 + λ2)2 = det(C)− α · tr(C)2

for α some constant (often in the range [0.04, 0.06]). (Harris)

Another option is to use the smaller eigenvalue λmin as a response value. (Tomasi)

Finally, we’ll take a corner to be a point which is a local maximum in its neighborhood in terms of
corner response value, under the condition that the response value is greater than a threshold τ .

1.1 The Full Process: Shi-Tomasi Corner Detection

The full process comes together as

1. Filter image with a Gaussian to remove noise.

2. Compute the gradient at every point.

3. Compute C at each point (based on a window around each point).

4. Compute the eigenvalues λ1 and λ2 of each C.

(a) If λmin > τ , and the point has the largest λmin in its region, call it a corner.

with parameters σ (for the Gaussian filter), window size, and τ .
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