
CSE 252A: Edge Detection

Lecturer: David Kriegman

Scribed by Owen Jow on October 30, 2018

1 Filtering Again

For most of the contexts in which we apply convolutions (denoising, CNNs, etc.), we’re using convolu-
tions because of an assumption that neighboring data values are related in some way. If neighboring
values are totally independent, convolution would not be appropriate for these applications.

1.1 Median Filter

Replace each value with the median of its neighborhood. This filter does not create new values; each
kernel application produces one of the values that were already there. So it wouldn’t be good for
smoothing out a halftone image,1 but it is good at eliminating spike values2 in an image.

If you apply the median filter too many times, you lose structure (details).

2 Edge Detection

Let’s say we want to segment the image, or divide it into regions that are semantically meaningful.
One way to do this is to detect edges and treat them as boundaries. An edge is a discontinuity in
brightness as we move in position (a break in space between one intensity and a different intensity).

Edges (as intensity changes, ignoring color) might be image manifestations of object boundaries,
surface normal discontinuities, reflectance discontinuities, or lighting discontinuities.

Basically, we want to find discontinuities (jumps). However, due to noise or small variations, we
might have jumps everywhere. So we’ll want to take image gradients in order to identify disconti-
nuities (edge = “sharp change” = high derivative value), but we’ll want to smooth the image first.

Images are sampled signals. To take a horizontal derivative3 of an image I at (x, y) using central
differences, we can simply compute I(x+ 1, y)− I(x− 1, y). We can also divide by 2, which is how
a Taylor series expansion will tell us to compute first derivatives.

1When we smooth a halftone image, we want each inter-dot value to be an average of the dots around it.
2By “spike values,” we mean isolated, nontrivially erroneous values. Reconstruction methods often produce these.
3Derivatives w.r.t. y work the same way, of course.

1



2.1 1D Edge Detection

1. Filter out noise by convolving with a Gaussian.

2. Take a derivative by convolving with [−1, 0, 1]. (Can combine with the previous step.4)

3. Find the peaks of the filtered signal. These should be local maxima and sufficiently large.

2.2 2D Edge Detection (Canny)

1. Filter out noise by convolving with a Gaussian G (then “J” = I ∗G).

2. Take a derivative in each direction, combine as gradient magnitude.

(a) If the gradient ∇J is (∂J
∂x ,

∂J
∂y ),56 then the gradient magnitude ‖∇J‖ is

√(
∂J
∂x

)2
+
(

∂J
∂y

)2
.

(b) Also compute the gradient direction as arctan
(

∂J
∂y /

∂J
∂x

)
.

3. Perform non-maximum suppression (see section 2.2.2).7

4. Perform hysteresis thresholding (see section 2.2.3) to track the final edges.

2.2.1 Choice of σ

Note that the gradient magnitude image changes according to the scale σ used to construct the
Gaussian filter. A smaller σ means thinner edges which are more sensitive to small variations like
noise, while a larger σ means the opposite.

We must take care when setting σ, as there is always a tradeoff between noise and blurred edges!
Do we prioritize detection accuracy (making sure we get the right edges) or localization accuracy
(making sure our edges are precise)?

Prof. Canny addressed this issue, coming up with a way to optimally assign σ based on the tradeoff
between false positives and poor localization. In practice, we usually just pick a σ that works.

2.2.2 Non-Maximum Suppression

In this step, we suppress each gradient magnitude value (set it to 0) if it is not larger than its two
neighbors in the gradient direction at the point. The gradient direction is orthogonal to the edge
represented at the point, so this is thinning out the broad edges from the Gaussian smoothing.

Since the gradient direction probably won’t give rise to two exact neighbors in the nearest two
rows/columns,8 we can interpolate to obtain the two neighboring values in the nearest rows/columns.

4“derivative of Gaussian filter”
5Note that we have a gradient at each location in the image. The overall result is either (Cartesian) an x-derivative

image and a y-derivative image, or (polar) a gradient direction image and a gradient magnitude image [reference].
6You can also take directional derivatives, i.e. the rate of change in a particular direction as opposed to just the

x- or y-direction. This isn’t relevant here, but just making a note that these aren’t the only derivatives possible.
7Unlike the 1D case, we can’t just find peaks. A peak, as an isolated value greater than all of the surrounding

values, isn’t the right notion to use. We want curves (boundaries), not isolated values.
8rows if the gradient direction is closer to vertical, columns if the gradient direction is closer to horizontal

2

https://stackoverflow.com/a/19816362


2.2.3 Hysteresis Thresholding

Before the previous step, our gradient magnitude image will often depict thick edges (due to the
Gaussian filtering and the σ we choose). Since the end result should be edges of minimal width, we
ultimately want to trace curves through these thick edges which go through high-magnitude points.

Non-maximum suppression takes care of thinning out edges. Hysteresis thresholding takes care
of the actual edge tracing part. It involves two thresholds (a “double threshold”).9

• Any magnitude less than the lower threshold is considered “not an edge” and discarded.

• Any magnitude greater than the higher threshold is considered “definitely an edge” and kept.

• Any magnitude between the thresholds is kept if it is connected10 to a “definite edge.”

To do tracing, we start at each local maximum which is greater than the high threshold and follow
the edge in the direction orthogonal to the gradient, stopping when the magnitude drops below the
low threshold. (The high threshold starts the edge curve, the low threshold continues it.)

At the end of the day, we are left with only thin, strong edges.

2.2.4 Parameters

Overall, the Canny edge detector involves three parameters: σ, τhigh, and τlow, where the latter
two parameters are of course the high and low thresholds for hysteresis thresholding and the former
parameter is the width of the isotropic Gaussian used for filtering.

9If we only have one threshold, we miss out on good edges if it is too high and have bad edges if it is too low.
10We determine connectivity based on gradient direction. From a given point, we can predict the next point along

the edge curve as the nearest point in the direction orthogonal to the gradient direction. Note that there are two
directions orthogonal to the gradient direction; we can follow either of them because an edge goes both ways.

3


	Filtering Again
	Median Filter

	Edge Detection
	1D Edge Detection
	2D Edge Detection (Canny)
	Choice of 
	Non-Maximum Suppression
	Hysteresis Thresholding
	Parameters



