
What I learned in CSE 167x: Computer Graphics

Owen Jow

Last updated August 13, 2018

1 Unit 0

In this unit, I got to review some of the freshman-year math relevant to computer graphics, in
particular the dot product aTb, which can be used to compute the angle between two vectors, and
the cross product a× b, which can be used to compute a vector orthogonal to its inputs.

The dot product can also be used for projection. When a is a unit vector, the projection of b onto
a is merely (b · a) a. When a is not a unit vector, we have to divide by a · a as well.

I also clarified the difference between rasterization and ray tracing: rasterization goes from geo-
metric primitives to pixels, while ray tracing goes from pixels to geometric primitives.

2 Unit 1

In the second unit, I first reviewed some of the most common linear transforms (scaling, shearing,
and rotation). Because these transforms can be represented as matrices, they inherit the properties
of matrices. For example, if applying the transform A to a point x + y, one can either compute
A(x + y) or Ax + Ay.

Next the unit went more into depth about rotations, particularly 3D rotations. I learned that
rotation matrices R are necessarily orthogonal (i.e. their columns and rows are orthonormal vectors,
and R−1 = RT ). Ravi also made clear the fact that the rows of R can be seen as the u,v,w axes of
the destination (rotated) coordinate frame, and that rotating a vector is equivalent to considering
the sum of its projections onto each of these u,v,w axes.

To my jubilation, we then derived Rodrigues’ rotation formula (the matrix form of an axis-angle
rotation). The formula involves adding the projections of the rotated vector onto each of the three
axes (one given, two inferred). One component doesn’t change during rotation (the projection onto
the given axis); the other two are based on the vector’s projected rotation in the plane orthogonal
to the given axis. When visualizing this, I always think of the axis being the up vector, the vector-
to-rotate pointing up-right, and then the rotation being into the page. (This is how Ravi drew it
in lecture.)

Later, I learned how surface normals transform, assuming it is known how points on the surface
transform. If the transformation for points on the surface is M, then the transformation for surface
normals is (M−1)T , meaning if M were just a rotation, then the surface normals would transform
in the same way as points on the surface. But usually this will not be the case.

1



gluLookAt setup: the camera is at a certain position with a certain orientation. The gluLookAt

transform can be seen as translating everything in the world s.t. the origin of the coordinate frame
is at the camera, then rotating everything in the world s.t. the coordinate frame aligns with the
given viewing direction and up vector. At the end of it all, the camera will be at the origin, looking
down the negative z-axis.

• The gluLookAt matrix is applied to points in world coordinates, and is analogous to the
extrinsic matrix (it puts things into camera/eye coordinates).

• Note that the given camera viewing direction and up vector might not be orthogonal, and
the viewing direction takes precedence – i.e. we will always use the viewing direction first,
and then just take the component of the up vector perpendicular to that.

Once points are in eye coordinates, we need to project them onto 2D as normalized device coordi-
nates. To do so, we can use orthographic projection (transform a cuboid viewing region to the [−1, 1]
cube) or perspective projection (transform a frustum viewing region to the [−1, 1] cube).

• In orthographic projection, parallel lines are preserved and further objects don’t look smaller.

• In perspective projection, parallel lines converge and further objects look smaller.

• The [−1, 1] cube represents normalized device coordinates, and contains z-buffer values in
addition to standard x and y. The z-values are quantized, i.e. everything within a certain
bucket will be drawn at the same depth.

The perspective projection matrix is
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1

d 0

 or


−d 0 0 0
0 −d 0 0
0 0 −d 0
0 0 1 0


It can be scaled by −d because of homogeneous coordinates (we always divide out by the final
coordinate, so such scaling doesn’t matter). The perspective projection matrix is analogous to the
intrinsic matrix, a difference being that the one shown here doesn’t have the same complexity.

The frustum near and far planes have dimensions controlled by the fovy and aspect ratio parame-
ters. The scale of the far plane w.r.t. the near plane is a byproduct of the field of view configuration,
which describes how large of an angle the camera is seeing.

Thanks to the homework I know that GLM/OpenGL’s matrices are column-major and will hope-
fully not forget this for a while.

3 Unit 2

3.1 Graphics Pipeline

The first thing I took away from this unit was a fuller understanding of the graphics pipeline. In
the simplified pipeline from lecture, the vertex shader first takes vertices from object coordinates to
camera coordinates to clip coordinates – optionally modifying/defining geometry and other vertex
properties along the way. Next, the rasterizer associates the projected shapes on the screen with

2



pixels and interpolates vertex properties over the fragments between the vertices. Finally, for each
fragment, the fragment shader sees the interpolated values and outputs a color/depth, upon which
we can perform depth testing and update the front buffer.

Here’s a summary:

1. Vertex shader : vertex processing, with MVP transform (clipping, perspective division, and the
viewport transform to follow; clipping/perspective division is what maps the space to [−1, 1]).
The vertex shader operates on vertices, does processing, and gives outputs corresponding to
vertices.

2. Rasterization: interpolation of vertex properties across pixels between vertices (automatically
handled by hardware). Also called “scan conversion,” because you scan over the pixels line
by line and assign values to them via interpolation within and across lines.

3. Fragment shader : takes interpolated values at pixels, operates on these, and outputs color
and depth for each pixel. After this step, depth testing (hidden surface removal) and buffer-
writing (usually to back buffer first, as per double buffering) can be performed.

Clarifications:

• Fragments. A fragment is a part of some geometry that was associated with a pixel; there
can be multiple or no fragments for a pixel region. After rasterizing a primitive, it is turned
into a bunch of fragments, one for every pixel (or sample portion of a pixel) that it covers.
From [2]: “In computer graphics, a fragment is the data necessary to generate a single pixel’s
worth of a drawing primitive in the framebuffer.” For example, we would need the depth of
each fragment in order to perform depth testing; one triangle’s fragment might be in front of
another triangle’s fragment at the same pixel. In general, fragments from multiple primitives
can contribute to a single pixel.

• Shaders. A shader is a simple program that runs on the GPU in parallel on all vertices or
fragments or whatever and computes properties for those things (technically it can compute
whatever it wants). “Fragment shader” is synonymous with “pixel shader,” despite fragments
and pixels not being the same.

3.2 OpenGL

OpenGL has some special conventions. For example, OpenGL’s camera frame looks down the
negative z-axis with the y-axis pointing up, while the standard vision camera frame looks down the
positive z-axis with the y-axis pointing down [to go from the former to the latter: after applying
the extrinsic matrix, apply a 180-degree rotation around the x-axis (which flips the y- and z-axes)].
For projection, points are centered around zero, so if you want your points in the ranges [0, w] and
[0, h] instead of [−w/2, w/2] and [−h/2, h/2], you should translate (x, y) by (w/2, h/2).

Clarifications:

• Camera coordinates. “Camera coordinates” (“in the camera frame”) means that points
are in a coordinate frame at the position of the camera (e.g. the pinhole) and, in OpenGL,
with the z-axis pointing in the direction of the physical image plane.

3



3.3 Lighting/Shading

Finally, the unit helped me refresh some lighting and shading concepts that I had long forgotten.
First of all, two styles of shading:

• Gouraud shading, which computes lighting colors in the vertex shader based on the vertex
normals; these vertex colors are then interpolated bilinearly at pixels during rasterization.

• Phong shading, which computes lighting colors in the fragment shader rather than in the
vertex shader. In the vertex shader, we just compute the normals. Then, during rasterization,
we interpolate the normals instead of the colors. The fragment shader uses the interpolated
normal at each pixel for lighting computations. (Phong shading cannot happen in the vertex
shader because the normals are not interpolated until rasterization.)

During local shading, we compute the light reflected by each surface toward the camera, which
depends on the surface normal, the direction to the viewer, the direction to each light, and the ma-
terial properties of the lights and objects. Each light has a color, and the objects also reflect certain
colors parameterized by ambient, diffuse, and specular values. Objects also have material properties
such as shininess. The light and material properties are combined through a lighting model (e.g.
Blinn-Phong) to compute the color that the viewer will ultimately see for each fragment.

The Blinn-Phong model, assuming constant attenuation, is

kaLa +
∑
i

Li[kd max(n · l, 0) + ks max(n · h, 0)s]

for

• ka the ambient reflection color,

• La the ambient light color,

• i an index for each light,

• Li the color of light i,

• kd the diffuse reflection color,

• ks the specular reflection color,

• n the surface normal,

• l the direction to the light,

• h the half vector between l and the viewing direction, and

• s the shininess.

The dot products are cosines, since the n, l, and h are taken to be unit vectors. They represent
Lambert’s cosine law at work, which says that the amount of light falling on a surface is proportional
to the cosine of the angle θ between the light direction l and the surface normal n. We assume that
a “beam” or bundle of light rays are falling on a surface in the −l direction.

This is related to foreshortening (in which a line appears shorter as the angle between the line and
the line of sight decreases).

4



surface

nl

θ Setup.

surface

Light falls on the surface in the −l
direction. The surface is tilted, so
the orange rays will not hit it.

surface

nl

θ
The dotted magenta line repre-
sents the component of the surface
available for the light to strike.

surface

nl

θ90 − θ

θ

The bottom-right angle is θ. We
can see this by shifting l and n up
and to the left, s.t. l aligns with
the left edge of the triangle. Then
the upper-left angle is 180 − θ −
90 = 90 − θ, and the rest follows
easily from there.

surface

nl

θ

θ

r cos θ

If the length of the tilted surface is
r, then the length of the relevant
magenta line (the component able
to receive light) is r cos θ. And
thus it is proportional to cos θ
as Lambert’s cosine law says.

5



4 Unit 3

This unit felt the most familiar to me. It covered basic recursive ray tracing, where

• a primary ray is cast through each pixel on the screen; then from the nearest intersection
point (if there is one) a shadow ray is sent to each light and, if visible, the light’s illumination
contribution is made

• this ray-casting process is repeated recursively if the intersected material is reflective/refractive

In basic ray tracing, there are only point lights, meaning by default there are only hard shadows.
We must cheat to get area lights/soft shadows, e.g. by representing area lights as grids of point lights.

Note that ray tracing, as a rendering method, is in contrast to rasterization, the previous rendering
method. In ray tracing, we go pixel by pixel and intersect rays with the 3D scene (“for each pixel,
for each object”). In rasterization, we go object by object and compute the colors of all pixels
covered by each object (“for each object, for each pixel in the object”).

• Much of Whitted ray tracing can also be implemented within a rasterization framework, but
it’ll often be difficult, forced, or unintuitive (and will provide no efficiency benefit whatsoever).

• It’s difficult to produce many realistic effects such as shadows and refraction with rasterization,
whereas ray tracing has no trouble (indeed it is natural for ray tracing to do these things).

• Unlike rasterization, explicit scene geometry (i.e. vertices) need not be defined for ray tracing.
We just have to be able to run an intersection routine with each object.

Ray tracing is also in contrast to path tracing (not covered in 167x). In path tracing, rays act
like light in the real world; after making an initial intersection, a ray continues to bounce around
the scene until it hits a light or is (randomly) terminated. So now the areas of the lights matter.
This produces more realistic images than ray tracing does, but takes longer and involves more noise.

• Ray tracing only has direct illumination.

• Path tracing introduces indirect (global) illumination: light bouncing off of other objects.

5 Acknowledgments

This document was inspired by Yining Liu’s “what I learned” writeups. The CSE 167x course was
run by Ravi Ramamoorthi on edX. A large thank-you to everyone involved.

6 Resources

[1] A Stack Overflow post to help understand gluLookAt (camera position & orientation handling)

[2] A Stack Overflow post to help understand fragments

6

https://stackoverflow.com/a/41280174
https://gamedev.stackexchange.com/a/8981

	Unit 0
	Unit 1
	Unit 2
	Graphics Pipeline
	OpenGL
	Lighting/Shading

	Unit 3
	Acknowledgments
	Resources

