
CS 280 Computer Vision
Spring 2018 Efros, Malik, Yu Lecture 19

1 Lecture

Correspondence

Application to SfM

As a review, in the structure from motion (SfM) problem we are given many images and want to (a)
figure out where they were taken from, and (b) build a 3D model of the scene. The idea is that by moving
around the scene, the cameras give us the information we need to recreate 3D structure.

In a simplified setup, the input is a collection of images with pairwise points (ui,j , vi,j) [corresponding to
scene point pi,j] already provided. The output is then

• structure: a 3D location xi for each point pi

• motion: camera parameters Rj , tj (and possibly a calibration matrix Kj)

There are i features (i.e. scene points) and j frames. Our goal is to minimize reprojection error, meaning
“given our newfound 3D point x and our camera parameters, we should be able to project x back into each
image and get the original point p.”

Camera calibration and triangulation: imagine we had the 3D points and their matches as 2D points
p in an image. The camera calibration problem is to recover the camera parameters from these known 3D
points and/or calibration objects. We know the structure; we want to find the parameters.

There are two types of parameters:

• internal (intrinsic): the parameters of the device itself: focal length, optical center, aspect ratio....
These are intrinsic to the camera.

• external (extrinsic): the parameters of the camera with respect to the world, i.e. the pose (position
and orientation). These are a function of where/how the device is placed.

Note: it only makes sense to talk about extrinsic parameters if we have multiple images.

The simplest way to perform camera calibration is to solve for the projection matrix which converts 3D
points to (u, v) image plane coordinates. We can place a known object in the scene, identify correspondences
between the image and the scene, and then compute the mapping from the scene to the image.

uv
1

 ≈

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

X
Y
Z
1

The problem is that the intrinsic & extrinsic parameters will then be mushed up into the projection ma-
trix, and it won’t be clear how to separate them. So the other way to do it is to explicitly solve for the
parameters.

Among other things, we have the extrinsic translation T of the optical center from the origin in world
coordinates, the extrinsic rotation R of the image plane, the intrinsic focal length f , the intrinsic principal
point (x′c, y

′
c), and the intrinsic pixel size (sx, sy). We can decompose the projection matrix into a product

1

of matrices that make these values explicit. If the original projection equation is

sxsy
s

 = Π

X
Y
Z
1

then

Π =

−fsx 0 x′c
0 −fsy y′c
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

[R3×3 03×1
01×3 1

] [
I3×3 T3×1
01×3 1

]
= intrinsics · projection · rotation · translation

We can solve this system using nonlinear optimization.

What if we knew the camera parameters (both intrinsic and extrinsic) and a single point’s correspondences be-
tween multiple images, and we wanted to compute the 3D location of that point? This is just a triangulation
problem.

Back to SfM: the trick is that we want to do both of these things (calibration and triangulation) at the same
time. This is what SfM does. Note: in SfM we’re mainly thinking about calibrating extrinsics, because we
assume the intrinsics already known (we can just read them off of EXIF files or something). But the bottom
line is that we calibrate the extrinsics and get the structure – the 3D positions – at the same time.

Before performing SfM, we must (1) detect features (e.g. using SIFT) and (2) match features across the entire
collection of images (e.g. using NN + RANSAC, where we’re estimating the fundamental matrix between
each pair of images and also tracking the matches across many images).

Then we can actually do SfM: solve for the geometry of the camera (a 3D position ci, a 3D orientation Ri,
and the focal length) and the 3D points (a collection of Xj ’s). To do so, we minimize the sum of squared
reprojection errors:

g(X,R, T) =

m∑
i=1

n∑
j=1

wij ·
∥∥∥∥P (Xi, Rj , tj) −

[
ui,j

vi,j

]∥∥∥∥2
where X is a 3D point. i corresponds to a location; j corresponds to a camera. P (Xi, Rj , tj) is the projection
of point i into the frame of camera j. (ui,j , vi,j) is the original location of point i in the frame of camera j.
Note: some points aren’t visible in some images, and we don’t want to penalize things that aren’t even seen.
Accordingly, wij is an indicator variable expressing whether point i is visible in image j.

Minimizing this function is called bundle adjustment.

Incremental SfM: initialization is important. It’s difficult to initialize all of the cameras at once. Luckily,
SfM with two cameras is relatively straightforward, and it’s easy to add new cameras to an existing model.
We can do SfM with just a few cameras at first, then add cameras one-by-one and recompute.

Application to Instance Retrieval

Recall the multi-view matching problem: we have two images and we find the correspondences between them
(which in turn gives us structure, motion, etc.). We can also frame this as a search for instances. Maybe we
have one image, and we want to find similar images in a huge dataset. This is also a type of matching. A
good image will have lots of correspondences, and a bad one will have very few.

In this way, correspondences are important for image (instance) retrieval.

2

