
CS 280 Computer Vision
Spring 2018 Efros, Malik, Yu Lecture 17

1 Lecture

Stereo Correspondence

How do we find points in our images which correspond to the projection of the same point out in the scene?
Given a point in the first view, we have to search along the epipolar line in the second view and pick the
best match.

We know that corresponding points lie on epipolar lines. Generally, the epipolar lines can be in various
configurations in an image, and this depends on how the cameras are aligned with respect to each other.
But in the special case where the cameras’ optical axes are parallel to each other, the epipolar lines will be
horizontal. Note: if we know the transformation between the two cameras, we can rectify the images (project
the same rays through the same pinholes onto parallel planes) and create this result ourselves.

Accordingly, we will henceforth assume that we are solving the problem with these horizontal epipolar
lines.

How do we determine which point in the second image (along the epipolar line) is the best match? Let’s
look at little windows surrounding each point, and compare each of those to the window surrounding the
original point. The idea that they should be the same is based on photo-consistency. We assume that the
point in the world is Lambertian and therefore should have the same radiance emitted in the direction of the
two cameras. So the brightness of the original point should be equal to the brightness of the corresponding
point.

However, since comparing only single pixels can be rather noisy, we’ll want to compare all of the surrounding
points as well. (Similarly to the single-pixel case, the brightness values of a whole window of points should
be equal to the brightness values of the corresponding window of points.)

We can reshape each window of, say, 25 pixels into a column vector (i.e. we can vectorize). The two vectors
should then be similar. So if we have

v =

 I1
...

I25

 and wi =

 I ′i,1
...

I ′i,25


denoting the windows of the original point p and its [proposed] correspondence qi, respectively, then we want
to minimize

‖v − wi‖2
(i.e. the length of v − w). Specifically, we want to choose the i that minimizes this distance. Note: the
L2-norm equates to the sum of squared differences (SSD), technically after a squaring.

Alternatively, we can maximize the overlap (the cosine of the angle between the vectorized windows):

arg max
i

v · wi

‖v‖‖w‖

This is sometimes called the cosine distance – it’s just the normalization of the dot product. Technically
it’s the cosine of the angle between the two vectors, so maximum similarity (where the angle is 0) gives the
highest cosine value 1. Historically, this objective equates to normalized cross-correlation (NCC).

1



NCC works slightly better, because it doesn’t depend on things like gain control (which could affect brightness
in different shots).

Once we have the the corresponding points in the rectified images, we can compute the disparity x− x′ and
set the depth to Bf/(x− x′) where B is the baseline.

Limitations of Our Naive Algorithm

• Textureless surfaces: imagine trying to compare viewpoints of a white wall or any other surface with
uniform brightness. The windows will look the same at many shifts!

• Repetition: imagine a grille. Many different views of the bars will look pretty similar.

• Occlusion: it’s possible that an object one camera sees is something that the other camera doesn’t see.
Note: when an object can be seen by one eye and not the other, it’s called half occlusion. When an
object can be seen by neither eye, it’s called full occlusion.

• Non-Lambertian surfaces: maybe we’re looking at a mirror or a shiny surface, and the brightness is
not the same in all directions.

It’s also heavily dependent on the window size. Larger windows are generally better for smoothing away the
effect of noise. However, if they’re too big and cover regions of multiple depths at once, we’re going to get
disparities that are kind of an average – the depth will be smoothed as well! Basically, if the window is large
we’ll get less detail and less noise, and if the window is small we’ll get more detail and more noise.

More modern techniques involve things like graph cuts.

Optical Flow

Optical flow is related to stereo disparity. In stereo disparity, there are two cameras at slightly different
positions with a disparity between corresponding points. To tie into optical flow, we can think of this as
taking one camera and moving it. (Instead of having two cameras looking simultaneously at the scene, we’ll
have one camera moving around the scene.) And whenever we have one moving camera, the corresponding
concept is optical flow. How do the points in the image appear to move – by how many pixels?

Before, we didn’t discuss how to actually measure optical flow. But now it’s time. Let’s examine algorithms
for computing optical flow given some video sequence.

Aperture problem: if we see just a little bit of the display, we might think the optical flow is something
other than what it really is. On the other hand, in some conditions we actually will see the true optical
flow. We really want the full image (i.e. global information) in order to compute the correct optical flow,
although sometimes local information at the right places (like corners) will do the job as well.

But there are also fake corners (T-junctions) created by one surface occluding another surface. These will
often also give false signals.

The Math

We have a point P = (x1, y1, t1) which moves to P ′ = (x2, y2, t2). The ts are times. Optical flow has
two components u and v, representing to the x-component and y-component respectively. They are defined
as

u =
x2 − x1

t2 − t1
=

dx

dt
and v =

y2 − y1
t2 − t1

=
dy

dt

The units of optical flow are pixels per second.

So optical flow is based on correspondence over time. Note that we are measuring these locations in the
image plane (not out in the 3D world).

2



Again we will assume that the surface in the world is Lambertian (so the brightness of the point will remain
the same – the brightness constancy assumption). Therefore it should be the case that I(x, y, t) ≈
I(x + ∆x, y + ∆y, t + ∆t). By extension, the total derivative should be 0.

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) + ∆xIx(x, y, t) + ∆yIy(x, y, t) + ∆tIt(x, y, t) + higher-order terms

Ix is the partial derivative of I with respect to x. This is just the Taylor series expansion of I. Now, because
of the brightness constancy assumption, I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) and

I(x, y, t) = I(x, y, t) + ∆xIx(x, y, t) + ∆yIy(x, y, t) + ∆tIt(x, y, t)

0 = ∆xIx(x, y, t) + ∆yIy(x, y, t) + ∆tIt(x, y, t)

0 =
∆x

∆t
Ix(x, y, t) +

∆y

∆t
Iy(x, y, t) + It(x, y, t)

Now, since ∆x/∆t is simply the x-component of the optical flow,

Ixu + Iyv + It = 0

and this is the grand equation for optical flow: the optical flow constraint equation.

We can calculate Ix and Iy by taking the difference between neighboring pixels’ x- or y-components. We
can calculate It by taking the brightness difference between the same pixel in two neighboring frames. So if
we have a video clip, then Ix, Iy, and It are known.

And where Ix, Iy, and It are our knowns, u and v are our unknowns.

A potential problem: so far, we have only one equation but two unknowns! But there are tricks to deal with
this; they will be revealed in time. First let’s rewrite the optical flow constraint equation as[

Ix Iy
] [u

v

]
= −It

Then, since
[
Ix Iy

]
= ∇I, this equation becomes

∇I · u = −It

where u =
[
u v

]T
. And herein lies the problem (and this is where the aperture problem arises): we’re

trying to determine u, but u has one component along the gradient of I and one component orthogonal
to the gradient of I. (Recall that ∇I and u are both vectors in two-dimensional space!) And the only
movement we can measure is perpendicular to the edge. Any sliding along the edge is unmeasurable. (The
human visual system asserts the nonexistence of anything it cannot measure, and hence won’t measure any
sliding motion at all.)

We can measure the component of u along the gradient of I. However, we cannot measure the component
perpendicular to the gradient of I. It is unknown to us. Since the gradient is oriented perpendicular to an
edge, this means that we can only register movement perpendicular to said edge.

We need to extend our signal. Let’s examine a neighborhood of pixels, and assume they all have the same
optical flow. (We will believe in the local constancy of optical flow: the idea that locally, the optical
flow is constant.) Now we will have an equation[

Iix Iiy
] [u

v

]
= −Iit

for each pixel i. (These are not powers, merely superscripts.) If we have n pixels, we will thus have n
equations. This can be rewritten as 

I1x I1y
I2x I2y
...

...
Inx Iny


[
u
v

]
= −


I1t
I2t
...
Int



3



or Au = −b where A is n × 2, u is 2 × 1, and b is n × 1. This is an overdetermined system of equations
which we can solve using least squares. The solution is u = −(ATA)−1AT b.

However, this depends on ATA being invertible, i.e. of rank 2. If its rank is less than 2, we cannot compute
the optical flow exactly (if at all).

ATA =

[
I1x ... Inx
I1y ... Iny

]I
1
x I1y
...

...
Inx Iny


=

[∑(
Iix
)2 ∑

IixI
i
y∑

IixI
i
y

∑(
Iiy
)2
]

i.e. a 2 × 2 matrix composed from the partial derivatives of I. This matrix is called the second moment
matrix. It all comes down to the rank of this matrix. If the rank is 0 (I is constant over the image), then
we can’t solve the equations and can’t say anything about the optical flow. If the rank is 1 (all of the ∇I
vectors are scalar multiples of the same thing, e.g. in the neighborhood of an edge), we still can’t solve the
equations. But if the rank is 2 (e.g. we are at a corner), we can at last compute the optical flow.

4


