CS 280 Computer Vision
Spring 2018 Efros, Malik, Yu Lecture 16

1 Lecture

Epipolar Geometry

Continuing from last time, we consider a setup in which two pinhole cameras are related to each other by an
arbitrary rotation R and translation t. We want to work out how we can recover 3D depth in this situation.

A point M in the world forms a plane with the centers of projection C7, Cs of the left and right cameras. (C;
is the pinhole of the left camera; Cs is the pinhole of the right camera.) This plane is called the epipolar
plane which contains M. There is an epipolar plane for every point M. Note that every epipolar plane has
one line in common: the line which joins the centers of projection of the two cameras.

C1 is in front of the image plane for the left camera. The distance between the two is f. Likewise, C5 is in
front of the image plane for the right camera. We call M; and M, the projections of the point M in each
camera. Therefore, the points (M, Cy, M7) form a straight line.

The epipolar line for each camera is the intersection of the epipolar plane (M, Cq,Cs) with the image
plane. If we extend the line (C1,C2) in both directions, then at some point it will intersect the left image
plane. This intersection is the left epipole e;. Similarly, we have a right epipole es. (e7 is the image of the
second camera’s pinhole in the first camera.)

Since (C1,C5) is in every epipolar plane, all epipolar lines in the first camera must go through e;.

, EPIPOLAR plane

_image plane

. / c o -
image plane for camera 2

for camera 1
\\\\k
N\

Right camera

Left camera

source: slides from Jitendra Malik’s CS 280 lecture

The general case: we have n points (X;,Y;, Z;) in the world, which means we have n projections (z;,y;) in
camera 1 and n projections (z},y}) in camera 2. We can measure all of the projections, and are interested
in reconstructing the world coordinates. This is the structure from motion problem.

At the same time, we need to figure out the rotation and translation between the two cameras.

Eight-Point Algorithm

e First we must find n corresponding points in the two views, i.e. projections of identical points in the
scene, e.g. My and M> in the previous section. There are other algorithms to determine these points,
but for now we will take them as givens.

e If we have at least eight point correspondences, we can find the E (essential) matrix, which encodes
the translation and rotation as E = TR where 7T is the skew-symmetric matrix corresponding to the
translation vector t.

e After we have the F matrix, we can factorize it to get R and ¢. At this point, the geometry is known
and we can recover depth by triangulation (just by extending rays out and seeing where they intersect).

e Once we have an approximate reconstruction, we can refine it via the process of bundle adjustment
(which is really just global least-squares).

Finally, we can use the algorithm as a whole in order to build 3D models of objects in the world given
multiple views.

Projective Transformations

Recall: projective transformations are a general family of transformations which includes affine transforms
and perspective projections. They are linear transforms if we use homogeneous coordinates. In homogeneous
coordinates, scalar nonzero multiples of a point, i.e.

[)\xl)\xn}T as compared to [ml xn]T
are regarded as the same point in P?~! projective space. Note that these are lines through the origin in
n-dimensional space. To go from homogeneous coordinates to ordinary Euclidean coordinates, we just divide
out by the final coordinate. To go the other way, we just include a 1 as the homogeneous coordinate.

An affine transformation is represented as

X' a1 a2 tw X
Y/ = |Q21 Q22 ty Y
w’ 0 0 1 1

A perspective projection is represented as

10 0 0 if X fX/Z
01 0 of|, |=|Y|=|f/z
0 0 1/f 0] |] Z/f 1

A general projective transformation (from P? to P?) is represented as

Zy P11 P12 P13 X1
/

Ty| = |P21 P22 P23| |T2
/

T3 P31 P32 P33] |T3

If we were to scale the matrix by a constant nonzero factor, every entry in the output would be multiplied
by the same factor. However, this would have no effect — it’d still be the same canonical Euclidean point.
Therefore, the matrix really only has 8 independent numbers (though it pretends to have 9); scalar multiples
don’t count, and we can treat one of the entries of the matrix as being a scalar multiple.

Essential Matrix Constraint

Let us return to epipolar geometry. Call 1 € R? and x5 € R? the homogeneous coordinates of M; and Mj.
Then
xQTTRxl =0 = xQTExl =0

x1 and x5 are measurable (in each camera’s coordinates), as they're just the projection of a point onto each
camera’s image plane. We will have one linear equation x2 Ez; = 0 for every pair of corresponding points,
and we can use these to determine the nine unknowns of E. We’ll need at least eight point correspondences,
since there are only eight independent entries. (This is the reason for the name “eight-point algorithm.”)
The more points the better — more points will help counteract noise.

Essential Matrix Factorization

After we have solved for E, how do we extract R and t? We have

E=TR
€11 €12 €13 0 a b
€21 €22 €23 = |—a 0 c| R
€31 €32 €33 b —c O

This requires an algorithm too, but it’s just an exercise in linear algebra — not worth covering in lecture.
Szeliski’s book has a nice exposition of it.

Summary

The eight-point algorithm allows us to recover the essential matrix and thereby 3D structure from two views
with an unknown relative orientation (R,t). If we have more than two cameras, we can combine information
from all of them in a global coordinate system and use the bundle adjustment routine, which is a kind of
least-squares minimization of the reprojection error.

e The idea there: use the eight-point algorithm to estimate the essential matrix, giving us an initial guess
for the positions of the cameras and the points in 3D. Given the estimated 3D position of each point,
predict 2D image plane positions for any camera in which it is visible. Then adjust the positions of the
cameras and the points in 3D such that they best predict what we see in the images (by minimizing
the squared error between the predicted and actual positions, over all cameras and all points).

Note: there is also the fundamental matrix F', which is similar to the essential matrix but uses pixel
coordinates instead of camera coordinates. With the essential matrix, we assume the cameras are calibrated
according to known intrinsic matrices K7 and K>. The fundamental matrix is related to the essential matrix
as F = (KJ)"'EK;'. If we don’t know the intrinsics, we can estimate the fundamental matrix instead.

SLAM is structure from motion in the setting of robotics.

Solving for Stereo Correspondence

Say we have two images of the same scene from different views, along with a point in the first image. What
is the corresponding point in the second image? It can only be on the corresponding epipolar line, so we
want to search over those pixels and find the best match. Note: we need R and ¢ (and by extension FE)
to calculate the epipolar line, and we need some correspondences to find E. Hence we do the matching in
stages. We get a few good points, which we match and use to estimate R and ¢, and then we try to find the
correspondences for all of the remaining points.

We will consider different possible geometries. The first involves cameras with parallel optical axes and
image planes parallel to the baseline. If the camera centers are at the same height and the focal lengths are
the same, then the epipolar lines will fall along the horizontal scan lines of the images.

Even if the cameras are actually rotated with respect to each other, we can re-project the image planes onto
a common plane parallel to the line between the optical centers. This process is called rectification, and
of course requires knowledge of R. After this transformation, the pixel motion for correspondences will be
horizontal.

