
CS 194-129 Deep Neural Networks
Spring 2018 Florensa Lecture 21

1 Lecture

A value function V (s) assigns a reward-to-go to a state s.

Reformulating the Policy Gradient

The gradient of the reward-to-go (w.r.t. θ) is

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)

(
T∑
t′=1

γt
′−tr(si,t′ , ai,t′)

)
︸ ︷︷ ︸

“reward to go” = Q̂i,t

Concretely, Q̂i,t is our estimate of the expected reward if we take action ai,t in state si,t. It can be seen as
a single-sample estimate of the expected reward when we take an action at a state.

We will call Q(st, at) =
∑T
t′=t Eπθ

[
γt

′−tr(st′ , at′)|st, at
]

the true expected reward-to-go.

alternatively: the total reward from taking action at in state st

Meanwhile, the value function V π(st) = Eat∼πθ(at|st) [Qπ(st, at)] represents the total reward from st.

And finally the advantage Aπ(st, at) = Qπ(st, at)−V π(st) describes how much better at is than the average
action according to π.

Our estimate of the gradient will now be ∇θJ(θ) ≈ 1
N

∑N
i=1

∑T
t=1∇θ log πθ(ai,t|si,t)Aπ(si,t, ai,t).

Value Function Fitting

The Q-function can alternatively be written as

Qπ(st, at) = r(st, at) + Est+1∼p(st+1|st,at) [V π(st+1)]

≈ r(st, at) + V π(st+1) with a single-sample estimate

Thus the advantage function can alternatively be written as

Aπ(st, at) = r(st, at) + V π(st+1)− V π(st)

If we fit V π(s), we will by extension have the Q’s and the A’s.

Policy Evaluation

We can then perform policy evaluation using a sampling (Monte Carlo) approach:

V π(st) ≈
1

N

N∑
i=1

T∑
t′=t

γt
′−tr(si,t′ , ai,t′) ≈

T∑
t′=t

γt
′−tr(st′ , at′)

The value function can be approximated by a neural network, with training data in the form of input/output

pairs
{(
si,t,

∑T
t′=t γ

t′−tr(si,t′ , ai,t′)
)}

. (It can be fit using supervised regression.)

1



An improvement: since the ideal target value is
∑T
t′=t γ

t′−tEπθ [r(st′ , at′)|si,t] ≈ r(si,t, ai,t) + γV̂ πφ (si,t+1),

use
{(
si,t, r(si,t, ai,t) + γV̂ πφ (si,t+1)

)}
as the training data. This will reduce the variance.

(V̂ πφ (si,t+1) is the previous fitted value function.)

Actor-Critic Algorithms

The batch actor-critic algorithm:

1. Sample {si, ai} from πθ(a|s) (run the policy).

2. Fit V̂ πφ (s) to sampled reward sums.

3. Evaluate Âπ(si, ai) = r(si, ai) + γV̂ πφ (s′i)− V̂ πφ (si).

4. ∇θJ(θ) ≈
∑
i∇θ log πθ(ai|si)Âπ(si, ai).

5. θ += α∇θJ(θ).

6. Go back to step 1.

The online actor-critic algorithm is similar, except we take only a single action at each step and update V̂ πφ
using the resulting information.

Review So Far

In policy evaluation, we fit a value function to the policy.

In actor-critic algorithms, the actor is the policy and the critic is the value function. Actor-critic algorithms
reduce the variance of the policy gradient.

Omitting Policy Gradients

If we create a new policy that always takes the action arg maxat A
π(st, at) (the best action from st, if we

then follow π), this new policy will always be at least as good as the previous policy. So we have the option
to forget about policy differentiation altogether and just use the policy implicitly defined by the advantage
function:

π′(at|st) =

{
1 if at = arg maxat A

π(st, at)

0 otherwise

π′ is as good as π and probably better.

Suddenly, our algorithm becomes (1) generate samples, (2) fit Aπ (or Qπ or V π), and (3) set π = π′.

This is the flavor of value-based methods: they only fit Q-functions instead of also a parameterized policy.

Policy Iteration

1. Evaluate Aπ(s, a).

2. Set π = π′.

The argmax of the advantages is the same as the argmax of the Q’s.

Aπ(s, a) = r(s, a) + γE[V π(s′)]︸ ︷︷ ︸
Qπ(s,a)

−V π(s)

=⇒ arg max
at

Aπ(st, at) = arg max
at

Qπ(st, at)

2



Thus we can focus on the Q-function, actually.

Fitted Q-Iteration: Offline

1. Collect dataset {(si, ai, s′i, ri)} using some policy.

2. Repeat K times:

(a) Set yi (the target) = r(si, ai) + γmaxa′i Qφ(s′i, a
′
i).

(b) Set φ (the parameters of the Q-function) = arg minφ
1
2

∑
i ‖Qφ(si, ai)− yi‖2.

This algorithm is off-policy, because the targets don’t depend on the fully trajectory and the transition [step
2a] is independent of π (all we need is si and ai). Hence we can reuse data collected under some other policy.

maxa′i Qφ(s′i, a
′
i) approximates the value of π′ at s′i, and is also the part that improves the policy.

Fitted Q-Iteration: Online

We probably don’t want to use any policy to collect data, though. Here, the online Q-iteration algorithm:

1. Take some action ai and observe (si, ai, s
′
i, ri).

2. yi = r(si, ai) + γmaxa′ Qφ(s′i, a
′
i).

3. φ -= α
dQφ(si,ai)

dφ (Qφ(si, ai)− yi). (Then repeat.)

In choosing our actions, we can follow an epsilon-greedy approach. (With ε chance, take a random action.
Otherwise, take the best action according to our current Q-function.)

A problem we’ll encounter while using this algorithm: correlated samples. Sequential states are highly
correlated (instead of being i.i.d. like we’d want). The solution: use a replay buffer.

Full Q-learning with replay buffer and target network:

1. Repeat:

(a) Save target network parameters: φ′ ← φ.

(b) Repeat:

i. Collect dataset {(si, ai, s′i, ri)} using some policy, add it to B.

ii. Repeat:

A. Sample a batch (si, ai, s
′
i, ri) from B.

B. φ -= α
∑
i
dQφ(si,ai)

dφ (Qφ(si, ai)− [r(si, ai) + γmaxa′ Qφ′(s′i, a
′
i)]).

φ′: parameters from a previous iteration, which are fixed
so that the targets are fixed across all of the inner iterations.

We maintain separate target network parameters to avoid having moving targets (targets which change at
every step) which might otherwise create instability. Without φ′, we’re trying to fit something different at
every step; this will help stabilize the learning of the algorithm.

“Classic” DQN

1. Take some action ai and observe (si, ai, s
′
i, ri), add it to B.

2. Sample minibatch {sj , aj , s′j , rj} from B uniformly.

3. Compute yj = rj + γmaxa′j Qφ′(s′j , a
′
j) using target network Qφ′ .

4. φ -= α
∑
i
dQφ(si,ai)

dφ (Qφ(si, ai)− yj).

3


	Lecture

