
CS 194-129 Deep Neural Networks
Spring 2018 Canny Lecture 20

1 Lecture

Markov Decision Processes

MDPs are the abstractions for the RL environments we’ll be looking at.

• Policy πθ(at|ot): the program that the actor executes

– a probabilistic model (a probability distribution over possible actions at time t, conditioned on
the observation at time t)

– for partially observed systems (observation 6= state)

• Policy πθ(at|st)
– a fully observed policy (which we’ll assume today)

– make action decisions based on knowledge of the actual state

We no longer have a set of demonstration trajectories; instead, we have a reward function. r(s, a) is the reward
function and tells us which states and actions are better. Often the reward signal occurs sparsely.

A Markov chain is defined by S, a state space, and T , a transition operator.

A Markov decision process is defined by S, a state space, A, an action space, T , a transition operator
(now a tensor which depends on previous state, next state, and previous action), and r : S × A → R the
reward function.

• Trajectory τ = (s0, a0, ..., sT , aT): a sequence of states and actions

– execution or unrolling of a policy

Reinforcement Learning

RL is like supervised learning, except instead of a label we produce an action, and instead of being able to
compare a label with a ground truth label, we have to go through the environment function which returns
a new state and reward. (This is assuming we’re dealing with model-free algorithms, and have no model of
the environment we can use for prediction.)

We don’t know whether an action is a good choice or a bad choice without acting it out in the world.

Because we have an MDP (which obeys the Markov property), the probability of an entire trajectory factors
into a simple product:

pθ(s1, a1, ..., sT , aT) = p(s1)

T∏
t=1

πθ(at|st)p(st+1|st, at)

A policy πθ(τ) [= pθ(τ)] can then be thought of as an assignment of probabilities to trajectories. Our goal
is to determine the policy that maximizes expected reward:

θ∗ = arg max
θ

Eτ∼pθ(τ)

[∑
t

r(st, at)

]
The expectation is over trajectories chosen according to the distribution of our current policy pθ(τ).

1

Value Functions

We define the expected (discounted) reward from state si, under a given policy π, as

V (si) =
∑
ai

π(ai|si)︸ ︷︷ ︸
probability of

taking action ai

 r(si, ai)︸ ︷︷ ︸
actual reward
at current step

+

expected total
future reward︷ ︸︸ ︷

γ
∑
si+1

V (si+1)p(si+1|si, ai)

This is otherwise known as the reward-to-go.

Bellman Update

Here, we only consider an optimal policy, i.e. one that always takes the best (max reward) action. In other
words, we maximize the expected total reward directly in the value recurrence:

V (si) = max
ai

r(si, ai) + γ
∑
si+1

V (si+1)p(si+1|si, ai)

If the state space is small enough, we can solve the recurrence exactly using this iterative calculation.

In theory, this might seem like a dynamic programming problem, with a DAG of states and actions. However,
the graph may have cycles and repeated updates may be necessary for each node... meaning it isn’t really a
dynamic programming problem. Also, initialization matters: node values should start at a quantity ≤ any
possible reward.

Reinforcement Learning Challenges

In supervised learning, we can train end-to-end by minimizing a differentiable loss attached to the output
of our network. This doesn’t work in RL, even if we have a differentiable policy πθ(ai|si), because (a) the
action isn’t continuous and (b) we don’t know the reward function so we can’t differentiate through it.

• The action isn’t continuous. The output of the network isn’t continuous, as it is with a softmax or
regression value. Even if we output the probability of an action (as opposed to an action choice), the
environment isn’t an open box, meaning we can’t tell how the environment’s going to respond to a
given probability distribution of actions.

– “The reward r(si, ai) is a function of the action ai selected by the policy, and the action set is
often discrete. We can’t directly differentiate through a discrete set.”

• We don’t know the reward function. It’s a black box (part of the environment).

Also, since rewards can occur sparsely, we might have hundreds of actions leading up to a reward, and it’s
hard to tell which were the most important. Thus, in assigning weights to actions we encounter the temporal
credit assignment problem.

Policy Gradients

Policy gradients are different from the gradients we’ve used so far to optimize deep networks. Since we can’t
do a simple end-to-end reward maximization, we instead settle for an approximation in which we run the
policy to generate sample trajectories and compute the reward and probability of each trajectory. Then we
can compute the gradient of the reward with respect to the policy parameters θ.

Concretely, we define our maximization objective as J(θ):

J(θ) = Eτ∼pθ(τ)

[∑
t

r(st, at)

]
≈ 1

N

∑
i

∑
t

r(si,t, ai,t)

2

i is the trajectory index; t is the time step.

Since J(θ) is an expectation over trajectories, we can’t compute it directly. But we can approximate it by
sampling trajectories from our policy. As we collect more and more samples, the distribution goes to pθ(τ).

As an integral, J(θ) appears as

J(θ) = Eτ∼pθ(τ)

[∑
t

r(st, at)

]
︸ ︷︷ ︸

r(τ)

=

∫
πθ(τ)r(τ) dτ

Then

∇θJ(θ) =

∫
∇θπθ(τ)r(τ) dτ

convenient identity: πθ(τ)∇θ log πθ(τ) = πθ(τ)∇θπθ(τ)πθ(τ)
= ∇θπθ(τ)

=

∫
πθ(τ)∇θ log πθ(τ)r(τ) dτ

= Eτ∼πθ(τ) [∇θ log πθ(τ)r(τ)]

Thus we have reduced the gradient of our expected reward to an expected value of the gradient of the log of
the policy. Expected values are nice because we can enumerate trajectories, i.e. take an average of the value
across trajectories for approximation.

And we can go one step further:

πθ(τ) = p(s1)

T∏
t=1

πθ(at|st)p(st+1|st, at)

log πθ(τ) = log p(s1) +

T∑
t=1

[log πθ(at|st) + log p(st+1|st, at)]

meaning

∇θJ(θ) = Eτ∼πθ(τ) [∇θ log πθ(τ)r(τ)]

= Eτ∼πθ(τ)

[
∇θ

(
log p(s1) +

T∑
t=1

[log πθ(at|st) + log p(st+1|st, at)]

)
r(τ)

]

= Eτ∼πθ(τ)

[
∇θ

(
T∑
t=1

log πθ(at|st)

)
r(τ)

]
because, in computing a gradient with respect to θ,

we don’t care about terms independent of θ

= Eτ∼πθ(τ)

[(
T∑
t=1

∇θ log πθ(at|st)

)(
T∑
t=1

r(st, at)

)]

Now we have an effective way of calculating the gradient:

∇θJ(θ) ≈ 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ai,t|si,t)

)(
T∑
t=1

r(si,t, ai,t)

)
(To optimize, we iterate according to θ += α∇θJ(θ).) Altogether we have the REINFORCE algorithm:

1. Sample trajectories {τ i} from πθ(at|st) (run the current policy).

2. Compute ∇θJ(θ) as
∑
i

(∑
t∇θ log πθ(a

i
t|sit)

) (∑
t r(s

i
t, a

i
t)
)
.

3. Iterate: θ += α∇θJ(θ).

3

Reducing Variance

A big problem with policy gradients: they have a lot of variance. The actual value of the reward matters;
just by moving the reward up and down, we completely change what the policy gradient does. In other
words, which samples we get can dramatically change what each update does. And there is a lot of variance
in this, meaning that anytime we estimate our gradient we might get a crappy gradient.

There is a lot of variance in our estimate of the gradient. We would like to reduce this.

Reducing Variance: Causality

Actions can’t affect past rewards. The policy at time t′ cannot affect rewards prior to time t′. Hence

∇θJ(θ) ≈ 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ai,t|si,t)

)(
T∑
t′=t

r(si,t′ , ai,t′)

)
︸ ︷︷ ︸
“reward to go” = Q̂i,t

we only need to consider downstream rewards.

Reducing Variance: Baselines

There can be a lot of variation in the reward. Thus it’s highly valuable to subtract a baseline b from it; then
everything is relative to the baseline. For example, the average reward baseline:

∇θJ(θ) ≈ 1

N

N∑
i=1

∇θ log πθ(τ)[r(τ)− b]

b =
1

N

N∑
i=1

r(τ)

Off-Policy Learning

Policy gradient methods are normally trained on a policy’s own trajectories as data. With off-policy learning,
we can have an algorithm that learns from its own experience, but is also able to use off-policy data from a
teacher (e.g. a human expert).

Restated: typically, a policy gradient method is on-policy (must generate new samples after every gradient
step) because Eτ∼πθ(τ) depends on the current policy in the ∇θJ(θ) calculation. To make it off-policy, we
can instead estimate the expectation using a different distribution, with samples from π̄(τ) instead of πθ(τ).

Importance Sampling

To estimate an expected value over a distribution p(x) given samples from another distribution q(x), we can
use importance sampling:

Ex∼p(x)[V (x)] = Ex∼q(x)[V (x)L(x)]

where Ex∼q(x)[L(x)] = 1.

L(x) is a correction factor (the importance weight); a simple choice for it is p(x)
q(x) , seen by

Ex∼q(x)
[
V (x)

p(x)

q(x)

]
=

∫
q(x)

p(x)

q(x)
V (x) dx

= Ex∼p(x)[V (x)]

4

To use off-policy policy gradients with importance sampling, we can make the correction in blue:

∇θ′J(θ′) = Eτ∼πθ(τ)

[
T∑
t=1

∇θ′ log πθ′(at|st)

(
t∏

t′=1

πθ′(at′ |st′)
πθ(at′ |st′)

)(
T∑
t′=t

r(st′ , at′)

)]

Here we sample from the policy πθ′ instead of πθ.

TRPO + PPO

Policy gradients are pretty limited in complex, high-dimensional environments. TRPO and PPO represent
the state of the art for optimization of RL models in continuous environments.

Currently, our model update is θ += α∇θJ(θ). Each gradient step is very expensive, so we would like to take
only a few large (high α) steps. However, the gradients are very noisy, so we can’t take large steps without
risking instability. TRPO and PPO were developed to take safe steps while still maximizing reward gain.

What does it mean to be a “large” gradient step? We don’t care how much θ changes, since the policy
parameterization is arbitrary; rather, we care how much the action probabilities change. Thus we can
maximize the reward with a penalty for large changes in πθ (the distribution over action probabilities).

Namely, in TRPO (trust region policy optimization) we maximize

L(θ′)− c KL(πθ, πθ′)

where L(θ′) = E
[
πθ′ (a|s)
πθ(a|s) A(s, a)

]
describes the ratio of probabilities of taking action a (in the proposed policy

state θ′ versus the original policy state θ) multiplied by the advantage. A(s, a) is the advantage of action a and
describes how much better a is than the average action (essentially, A(s, a) serves as a reward value).

• We want to maximize the expected gain; note that when we move from policy θ to policy θ′, we’re
multiplicatively transforming the likelihood of taking action a.

• At the same time, we want to make sure that the new parameters θ′ aren’t giving us a policy that’s too
different from the current one. So we also minimize the KL divergence (“difference in distributions”).

• “Trust region”: a region where a probability distribution doesn’t change too much.

TRPO has two terms in its objective: one a relative gain in reward, the other the KL divergence between
the current and proposed parameter states. PPO (proximal policy optimization) has an additional loss term
which is considerably simplified and doesn’t use KL divergence.

5

	Lecture

