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1 Reading

The true challenge to artificial intelligence arises from solving problems that can be easily performed [intu-
itively] by humans but cannot be easily described [formally]. For example, speech recognition is an “intuitive
problem.” Currently, the solution to such problems lies in allowing computers to learn from experience and
to understand the world in a hierarchy of concepts, with each concept defined through its relation to simpler
ones. In this way a computer can learn complicated ideas by building them out of simpler elements. Typi-
cally this process occurs over many layers, which can be represented as a deep graph. Hence this approach
to AI is called deep learning.

Instead of relying on hardcoded knowledge, AI systems should be able to acquire their own knowledge via
machine learning (which here means “extracting patterns from raw data”). It is important to note that
the performance of machine learning approaches depends heavily on the data representation they are given.
Relevant features must be present in the representation, whether implicitly or explicitly, or the ML algorithm
will not be able to make a meaningful prediction.

However, it is often difficult to know exactly which features should be extracted. Therefore we often
use ML to discover not only the mapping from representation to output but also the representation it-
self (representation learning). The quintessential example of a representation learning algorithm is the
autoencoder, which combines an encoder (which converts the input data into a different representation) and
a decoder (which converts the new representation into the original format). The goal is to create a new
representation with various nice properties while preserving information present in the original form.

Deep learning learns representations in an incremental way, by building representations out of other, simpler
representations. The quintessential example of a deep learning model is the feedforward deep network, or
multilayer perceptron. This is just a mathematical function mapping a set of input values to output
values, and is formed by composing many simpler functions. Each application of a different mathematical
function will provide a new representation of the input.

In summary, deep learning is an approach to AI, specifically a type of machine learning (a technique that
enables computer systems to improve with experience and data) which represents the world as a nested
hierarchy of concepts. The book contends that machine learning is the only viable approach for building AI
systems capable of operating in complex real-world environments.

The Increasing Accuracy, Complexity, and Impact of Deep Learning

In recent years, deep learning has seen tremendous growth in popularity and usefulness, primarily as a result
of more powerful computers (enabling the training of more complex models), larger datasets, and a plethora
of techniques for training deeper networks.

• Increasing model sizes. Biological neurons are not very densely connected, so our models have had
a number of connections per neuron similar to that of mammalian brains for decades. On the other
hand, neural networks are not projected to have the same number of neurons as the human brain [in
total] until at least the 2050s. As it stands, total model size has been doubling roughly every 2.4 years.

• Increasing dataset sizes. As of 2016, a rough rule of thumb is that a supervised deep learning
algorithm achieves acceptable performance with about 5000 labeled examples per category and matches
or exceeds human performance when trained with a dataset of at least 10 million labeled examples.
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Deep learning has had a dramatic impact on tasks such as speech recognition and image segmentation. After
all, the complexity of solvable tasks increases alongside the scale and accuracy of deep networks.

• LSTMs are able to output an entire sequence of characters transcribed from an image, rather than just
identify a single object.

• RNNs such as the aforementioned LSTM sequence model can be used to model relationships between
sequences and other sequences rather than just fixed inputs. Such sequence-to-sequence learning is on
the cusp of revolutionizing machine translation.

• Neural Turing machines (i.e. self-programming technology), though in their infancy, learn to read from
memory cells and write arbitrary content to memory cells. Such neural networks can learn programs
from only examples of desired behavior (e.g. learn to sort lists of numbers given examples of scrambled
and sorted sequences).

• In the context of reinforcement learning, an autonomous agent must learn to perform a task by trial
and error, without any guidance from the human operator. RL systems are capable of playing Atari
games and performing complex manipulation tasks, among a vast expanse of other applications.

2 Lecture

There is no doubt that AI has seen tremendous success in recent times. For starters, the application scope
of AI is much higher than it used to be. We no longer need to customize a representation for every new
task; instead we can apply the same methods to several different problems and achieve good results on
all. Additionally, many problems previously considered “AI-hard” no longer hold that distinction. Despite
our previous belief that Jeopardy, Go, and face recognition would require general intelligence, machines are
already able to accomplish these tasks at a human level or better – and they’re still improving. If competition
results for [TIMIT] speech recognition and image classification are any indicator, deep learning error floors
are drawing ever further away from the classical AI floors of the past.

Nevertheless, results are not as optimistic as news articles often make them out to be (in one sense because
the toy problems we’re solving are not the same as the real problems we aim to solve). The press likes to
report on things that are wrong, things that are eye-catching and fantastical. One truth that the media has
touched on, however, is that there are many risks associated with AI:

• Economic risks: AI will displace jobs. Machines perform very well at specific tasks, and human
societies are stratified by specialization when it comes to employment. Maybe machines don’t have
general intelligence, but it doesn’t matter... one need not be good at jeopardy to excel at a service job.

• Existential risks:

– Security: As a result of AI we might have mutating viruses, which have never been dealt with
before. Furthermore, with all of our interconnectedness a security breach could cause any number
of systems to run amok. Considering our infrastructure, this could be absolutely devastating in
an infinite number of ways.

– The internet: Unlike physical systems with checks and balances, there is no limit to the speed
at which virtual entities (e.g. entities on the internet) can move around and reproduce. This is
a real risk, and demands addressing ASAP. Especially when it comes to AI, technology is not
showing the same kinds of limits as previous generations!

– When Google acquired DeepMind (a company building state-of-the-art AI systems), one of the
conditions DeepMind imposed was that Google create an AI ethics/evaluation board to study new
technologies. This was motivated in part by the thought that DeepMind, once a cottage company,
might now find itself in everyone’s homes where its AI could do some real damage.

According to Yann LeCun, DNNs require intuitive insights, theoretical modeling, practical implementation,
and empirical/scientific analysis in order to be understood. There is no single framework or set of principles
that can be used to explain everything. On that note, this class is structured around effective design patterns
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and analysis for deep networks. We will use visualization to understand such networks, e.g. as the animation
of optimization strategies for a DNN.

The first third of the class will focus on computer vision and general DNN principles. The second third will
involve natural language. The final third will involve imitation/reinforcement learning.

Rationale for Deep Neural Networks

Phases of Neural Network Research

• 1940s-1960s: Cybernetics, developing electronic signals to emulate the brain

• 1960s-1980s: Computer systems went digital

• 1980s-1990s: Connectionism, backpropagation, performing complex calculations in aggregate

• 1990s-2000s: Computational learning theory grew up, yet learning still computationally hard

• 2006- : Deep learning, end-to-end training, large datasets, many applications

Why has deep learning been so successful?

Well, first of all, it turns out the problems we thought were hard were actually not so hard after all. Often
when we called a problem hard, we were really saying that an instance of the problem was hard. But in
practice we have an entire distribution of input instances, and we care more about the [more reasonable]
typical case than we do about the worst case. One might argue that even if this is the case, it is an NP-hard
task to identify the optimal solution when training a deep network. But we don’t need the optimal solution.
Instead of finding the optimal solution, we can use gradient-based or greedy algorithms in order to find a
greedy solution – and as it happens, this isn’t half as difficult. In this sense, if a problem has a greedy
solution it can be considered “easy.” Therefore, the problems we want to solve are actually easy! Many
learning problems do indeed have reliable steepest descent paths to a good model.

Also, hierarchical representations (manifested as a multi-layer structure) have helped a lot. Before DNNs,
people had hand-designed hierarchical models for computer vision (input image → edge image → 2.5D sketch
→ 3D model). Now, even without hand-engineering, CNNs are able to do something similar by going from
pixels to edges to contours to blobs... simply by virtue of their architecture and training process.

Why are hierarchical representations so useful? We can uncover an answer to this question by observing
humans. In general, humans learn higher-level skills via an iterative process. We develop one skill (e.g.
hitting a tennis ball), then advance to the next skill (e.g. serving or volleying). This matches well with deep
architectures for learning. Human learning is hierarchical and we know it works, so it makes a lot of sense
that hierarchical models would also work for deep networks.

A Brief History of Computer Vision

• 1970: David Marr articulated that vision is a challenge of layered representation, arguing that we
should go from raw pixels to an edge image circumscribing objects to a view-dependent model with
depth to a view-independent 3D model.

• 1978: Marr and Nishihara came up with shape descriptions, dictating that we should break big objects
into, e.g., limbs and cylinders (the generalized cylinders approach).

• 1991: Turk and Pentland arrived at eigenfaces, a data-driven approach to recognizing faces. In it, we
would first perform PCA on a set of face images (i.e. compute the eigenvectors). These eigenvectors
represent principal components for the family of images, aka additive stereotypes for a face. Typically
a face would load heavily on the first few of these principal components. Anyway, PCA allowed us to
express general faces in terms of such a basis. It was interesting that this was a data-driven approach,
which was somewhat new at the time.

• 1999: Lowe presented SIFT, which allowed us to recognize special signature regions of objects using
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view-invariant features (under the idea that these features would be highly predictive of the class of
an object). SIFT allowed us to perform feature matching, simply by comparing these view-invariant
features for multiple patches.

• 2003: Sivic and Zisserman presented a bag-of-words approach, where we would take feature sets and
construct code books (i.e. clustering all possible representations of features into a smaller set of codes,
and then coding the image using the nearest matching code). This simplified the problem of matching
an initially analog representation of a feature to matching a code. In the method, we would take an area
of an image, compute the view-independent SIFT features, then match the resulting high-dimensional
vector with the nearest matching code vector. At this point the image patch would be assigned a code,
and this code could be matched to the codes of corresponding regions in other images.

• 2005: Dalal and Triggs presented Histogram of Gradients, allowing us to generate even bigger codes.

• 2006: PASCAL, ImageNet, and other standardized benchmarking competitions arose. This proved to
be a nice barometer for progress on the image classification task, and to this day we are still improving.
Amazingly, nets for these competitions are doing what David Marr anticipated all the way back in 1970,
even though they are not specifically engineered for it! (Feature representations at each layer are not
hand-engineered; accordingly, nets are inferring intermediate representations with no explicit cues.
What’s impressive is that they have somehow learned these representations in a greedy fashion – using
only gradient descent on the loss.)
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