Human Activity Recognition with HMMs

William Jow David Lin Owen Jow
2nd year undergraduate 3rd year undergraduate 4th year undergraduate
williamjow@berkeley.edu lin.david@berkeley.edu owenjow@berkeley.edu
Abstract

In this project, we explore applications of hidden Markov models (HMMs) in the
context of human activity recognition. We frame the recognition problem as a
multinomial classification instance, where our model is given a video as input
and must associate it with one of a predetermined set of activities. In building a
model, we first extract per-sequence feature matrices from a training corpus of
videos and subsequently run the EM algorithm on per-class HMMs in order to fit
their parameters to each class’s features. Later, we extend MLE-based evaluation
using normalization and ensemble methods. Our algorithm produces models with
50-80% classification accuracy on a test set, vastly outperforming the baseline 17%
given by uniform random sampling.

1 Introduction

Activity recognition is an active area of research in computer vision, and has applications in a wide
range of domains (including healthcare, HCI, and real-time surveillance carried out by oppressive
totalitarian regimes). In the modern era, typical cutting-edge methods (e.g. [1l], [2]], [3]]) ride the
deep learning wave and develop fancy statistical ML formulations that involve buzzwords such as
“convolutional neural networks" and "LSTMs." In this report, however, we take a step backward and
argue that Markov chains are all you need E], training a hidden Markov model (HMM)-based classifier
on a dataset of a few hundred videos in order to achieve surprisingly decent results.

More specifically, we consider (human) activity recognition as a multinomial classification problem
and build a model based on multiple HMMs, one for each activity, where the job of the aggregate
model is to take a video of a human doing something and decide whether the human is (a) walking,
(b) running, or so on. Each HMM is trained to represent the sequential progression of a single activity.

To engineer each HMM, we first extract centroid, edge, and optical flow features from all training
videos corresponding to that HMM’s activity, and then run the expectation-maximization (EM)
algorithm to determine the MLE of the HMM’s parameters given the set of observed feature vectors.
After training each HMM in this fashion, we can evaluate the overall model on a video by having
each HMM score the video’s feature representation and then choosing the activity whose HMM
produces the highest score. We also find slight improvement through normalization and ensemble
methods, in which we (a) attempt to enforce that the output distributions of each HMM resemble
each other in first and second central moments and (b) train multiple HMMs for each activity and
average their outputs.

We evaluate our algorithm on the KTH action dataset [4]], which contains several hundred videos
of six activity classes over homogeneous backgrounds. In contrast to uniform random sampling,
which gives an expected 17% classification accuracy, our method classifies each activity with 50-80%
accuracy on a separate test set. Meanwhile, despite some variability in performance, ensemble models
are shown to slightly outperform vanilla models in classifying most activities.

'to attain 50% accuracy

2 Background

2.1 HMMs

Our method uses hidden Markov models in order to predict the correct activity. In our context, the
hidden Markov model (HMM) is a sequence classifier that assigns a label to each item in a sequence.
An HMM involves an underlying Markov chain, which is a sequence of variables in which the
probability of an event is dependent only on the prior state. Given a sequence of observations, the
HMM computes a probability distribution over the possible label sequences and selects the best one.

An HMM relies on three components: a transition probability distribution, an observation likelihood
distribution, and an initial state distribution. The transition distribution describes the distribution for
the next state given the current state. The observation distribution describes the distribution of the
output given the current state. Finally, the initial state distribution describes the starting distribution
over the states. Together, these properties allow the HMM to compute the probability for any sequence
of events.

An HMM also has two core algorithms to help determine the likelihood of an observation given an
HMM and to learn the HMM parameters.

2.2 The Forward Algorithm

The forward algorithm is used to compute the likelihood of a certain observation sequence. The
algorithm uses dynamic programming to compute the observation probability by summing over the
probabilities of all possible hidden state paths that could generate the observation sequence. To
compute the forward probability, the previous forward path probability, the transition probability,
and the state observation likelihood are multiplied together in each step. The pseudocode of this
algorithm is as follows:

If a4 (j) = forward[j, t| denotes the probability of being in state j after observing
the first ¢ observations, a; ; denotes the transition probability from state 7 to state j,
b;(o0¢) denotes the probability of observing o, given that the current state is j, and
sr is the final state,

Algorithm 1 Forward Algorithm

procedure FORWARD(observations length 7', state graph length V)
initialize forward[N, T']
for each state s from 1 to IV do
forward[s, 1] <— ags - bs(01)
for each time step ¢ from 2 to T’ do
for each state s from 1 ztvo N do

forward[s, t] Z forward[s',t — 1] - ay s - bs(or)
s'=1

return Zivzl forward[s,T] - as, s,

In our implementation, we take the log of each probability and thus perform
addition where there is multiplication above.

2.3 The Forward-Backward Algorithm

The forward-backward (or Baum-Welch) algorithm, a special case of the expectation-maximization
(EM) algorithm, is used to learn the parameters of an HMM. The algorithm allows us to train the
transition and emission probabilities of the HMM. It iteratively improves on the probability estimates
that it learns. Given a sequence of observations and emissions, the algorithm computes the posterior
marginals of all hidden state variables. It relies on calculating the forward and backward probabilities
in order to compute the transition probability and observation probability. The pseudocode of this
algorithm is as follows:

If &:(4,) denotes the probability of being in state ¢ at time ¢ and state j at time
t + 1, v(j) denotes the probability of being in state j at time ¢, and backward
probability 5;(7) denotes the probability of observing the observations from time
t 4+ 1 onward given that the current state is 7,

Algorithm 2 Forward-Backward Algorithm

procedure FORWARD-BACKWARD(observations length 7', observation set V')
initialize transition matrix A, observation distribution B

repeat ‘ .
for all £, j do v, (j) = O‘ta(])(ft(;)
forall .4, do & (i,) = ai(7)aijb;(0r+1)Bev1(5)
ar(sr)
T-1 T—1 N
Ayj (Z&(m)) / (Z > & k)
t=1 t=1 k=1
T T
Bi(we) | > w0 |/ (Z %m)

until convergence

3 Methods

3.1 Overview

The activity recognition pipeline involves three main components: feature extraction (data processing),
model construction (training), and video classification (evaluation).

1. Feature extraction. Subtract the background, determine regions of interest, and then extract
shape and optical flow features.

2. Model construction. Pass these features to a k-means clustering algorithm, which provides
an alignment for each time-indexed feature with one of k states. Use the aligned sequences
to train HMMs with the Baum-Welch algorithm, one HMM for each activity.

3. Evaluation. At test time: perform MLE with our pre-trained HMMs.

In the following sections, we detail the methodology behind each of these components.

3.2 Feature Extraction

The first step is feature extraction. Since visual data tends to be extremely high-dimensional (for
scale, a low-resolution 160 x 120 frame contains 19,200 pixels), it is impractical to train models on
raw inputs. Therefore, when processing our videos we need to embed each frame into some lower-
dimensional space which encodes the information necessary to characterize an activity. Pseudocode
for feature extraction can be found in Algorithm 3.

In defining the encoding, we emulate previous approaches (e.g. Kolekar and Dash in [3]) and extract
features based on shape and movement (optical flow). Specifically, we define for each frame a vector
containing some combination of centroid, edge, and optical flow features.

o Centroid: the centroid of thresholded points in the image.
e Edge: a window around the centroid in the edge image (dimensionality reduced using PCA).

e Optical flow: a frequency representation of dense optical flow values in the primary region
of interest. Optical flow is computed using either the Lucas-Kanade method (for tracking
points) or Farneback’s algorithm (for determining all flow values within a block).

— We include divergence, curl, and average velocity as supplemental flow features.

Algorithm 3 Feature Extraction Algorithm

1: For each frame F' in video:

2: G < grayscaled F

Edge image E < Canny edge detection on F'
Foreground O < F minus background

Compute edge features on O

Compute centroid features on O

Compute optical flow features on Epyey, Ecurr

8 Use PCA to post-process edge and optical flow features
9: Combine all features into one vector

AR A

3.3 Model Construction

As previously described, we train a first-order left-right hidden Markov model for each activity in our
dataset. Given a sequence of observed feature vectors, the Baum-Welch algorithm is used to estimate
the parameters of the model. A high-level description of the algorithm can be found in Section 2.3]

3.4 Video Classification

We use maximum likelihood estimation in order to classify the activity. In other words, we compute
the log probability of a given video’s feature vector under each trained HMM, and choose the HMM
associated with the highest probability.

On top of MLE, we do two things. First, we “normalize" the output of each model according to its
output statistics over a randomly generated corpus of arbitrary videos. The goal of this step is to
make the output distributions of each model resemble each other, so that none have more weight than
the others. Second, we borrow a technique from machine learning and ensemble multiple HMM:s for
each activity. Namely, we train multiple Markov models with varied parameters in a bagging fashion
(on different subsamples of the data). As seen in the results section, we find that this provides a slight
edge over the vanilla model in most cases.

4 Experiments

We train and evaluate our method on videos from the KTH action dataset. The KTH dataset consists
of six hundred 160 x 120 videos, over which six different activities are performed by 25 different
people. Conveniently, the videos take place over a homogeneous background; this simplifies the job
of background subtraction, which is not the focus of this work.

The six activities included in the dataset are walking, jogging, running, boxing, handwaving, and
handclapping. We train a separate HMM for each activity, and judge our algorithm by its multi-class
recognition accuracy.

We split the full dataset into a training set of 384 videos and a test set of 216 videos (equating to 64
training videos and 36 test videos per activity).

80 100 120 10 6 8 10 120 140 s 100 120 140

Figure 1: Raw frame, foreground mask, edge image

5 Results

Table[T] contains the classification accuracy associated with each of the activities in the KTH dataset.
Each percentage denotes the proportion of correctly classified videos for the activity.

Table 1: ensemble of five GMM HMMs trained with different snapshots of the data

Activity boxing | handclapping | handwaving | jogging | running | walking

Train % 84% 68% 52% 52% 65% 63%

Test % 81% 72% 75% 72% 69% 58%
Random % 17% 17% 17% 17% 17% 17%

Note: since there are six classes, uniform random sampling would yield a classification accuracy of
17% in expectation. Our method performs quite a bit better than this, showing that it has learned
something about each activity.

Also, performance on the test set is similar to performance on the training set, demonstrating to
our satisfaction that the classifier can generalize to unseen videos. In a few cases (handwaving and
jogging), the model actually does significantly better on the test videos than it does on the training
videos. This is potentially due to the test set’s smaller size, leading to greater variance in performance
(on top of the existing variance from data subsampling during training).

As justification for our use of an ensemble, Table [2|depicts a comparison in classification accuracy
between an ensemble-based model and a non-ensemble-based model. The ensemble-based model
performs at least as well or better on four of the six activity datasets.

Table 2: comparison against HMM trained on size-25 edge features and size-25 optical flow features

Activity boxing | handclapping | handwaving | jogging | running | walking
 Test% 81% 72% 75% 72% 69% 58%
(with ensemble)
Test %
. 61% 47% 61% 53% 75% 81%
(without ensemble)

6 Discussion

Our method does relatively well at classifying videos, and significantly outperforms a baseline
random model. However, it is far from the state of the art when it comes to human activity recognition.
One limitation is that we’re using Markov models, which exhibit a memoryless property in that each
state depends only on a previous state, whereas newfangled methods utilize more complex models
such as LSTMs (which are able to take into account a long-term memory of a sequence, and perhaps
understand more about a behavior that way).

If constrained to the domain of Markov, however, the main limitations likely stem from the feature
representations we’re using. There are many features that could be included that we have not yet
tried, e.g. raw flow values in multiple small windows of greatest magnitude, eddies in the flow field,
the DFT of distances from the centroid to human contours... the list goes on. Thus far, we have found
the feature representation to make the biggest impact on performance.

Furthermore, we have a large number of parameters to tune (see the configuration file in our code-
baseE]) and are not quite sure which ones give the best results. We have found that different parameter
settings can sway the performance of our model to a large degree, in one instance misclassifying
everything and in another classifying everything to a medium (~40%) accuracy. Parameters include,
e.g., which features to use, dimensionality of feature spaces, number of models in the ensemble, and
subsample percentages.

*https://github.com/ohjay/hmm_activity_recognition

https://github.com/ohjay/hmm_activity_recognition

7 Conclusion

In this report, we have presented an HMM-based classification approach to human activity recognition.
We extend previous approaches with custom-defined feature representations (e.g. PCA ROI edges and
histograms of flows), normalization of output distributions, and Markov model ensembles. As alluded
to in the previous section, there is much work that could still be done, e.g. re-engineering features
and enacting searches over the parameter space for the best values; we haven’t yet had much time
to experiment. Nevertheless, on the whole we have found Markov models to give unprecedentedly
strong results in the challenging task of activity recognition.

References

[1] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the
kinetics dataset. CoRR, abs/1705.07750, 2017.

[2] Fabien Baradel, Christian Wolf, Julien Mille, and Graham W. Taylor. Glimpse clouds: Human
activity recognition from unstructured feature points. CoRR, abs/1802.07898, 2018.

[3] Song-Mi Lee, Sang Min Yoon, and Heeryon Cho. Human activity recognition from accelerometer
data using convolutional neural network. In 2017 IEEE International Conference on Big Data
and Smart Computing (BigComp), pages 131-134, Feb 2017.

[4] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local svm approach. In
Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.,
volume 3, pages 32-36 Vol.3, Aug 2004.

[5] M. H. Kolekar and D. P. Dash. Hidden markov model based human activity recognition using
shape and optical flow based features. In 2016 IEEE Region 10 Conference (TENCON), pages
393-397, Nov 2016.

	Introduction
	Background
	HMMs
	The Forward Algorithm
	The Forward-Backward Algorithm

	Methods
	Overview
	Feature Extraction
	Model Construction
	Video Classification

	Experiments
	Results
	Discussion
	Conclusion

