
CS 61A Structure and Interpretation of Computer Programs
Spring 2017 Orders of Growth Review

For each of the following code segments, determine the order of growth of the runtime as a function of n. For instance,
your answer might be Θ(

√
n)... or even Θ(n5 log n) if you’re feeling fancy. The solutions to all of these problems can

be found on the slides, which will be posted after the review session on owenjow.xyz/cs61a/presentation-slides.

1. (2 points) Question 0

def mystery0(n):

total = 0

for i in range(n):

total *= i

for i in range(n // 2):

total += i

return total

_______________

2. (2 points) Question 1

def mystery1(n):

if n <= sqrt(abs(n)):

return n

return n + mystery1(n // 3)

_______________

3. (2 points) Question 2 (/follow-up)

def mystery2(n):

while n > 1:

x = n

while x > 1:

print(n, x)

x = x // 2

n -= 1

_______________

def mystery2f(n):

while n > 1:

x = n

while x > 1:

print(n, x)

x -= 1

n //= 2

_______________

http://owenjow.xyz/cs61a/presentation-slides/


2

4. (2 points) Question 3

def mystery3(n):

result = 0

for i in range(n // 10):

result += 1

for j in range (10):

result += 1

for k in range (10 // n):

result += 1

return result

_______________

5. (2 points) Question 4

def mystery4(n):

total = 0

for i in range(1, n):

total *= 2

if i % n == 0:

total *= mystery4(n - 1)

total *= mystery4(n - 2)

elif i == n // 2:

for j in range(1, n):

total *= j

return total

_______________

6. (2 points) Question 5

def mystery5(n):

n, result = str(n), ’’

num_digits = len(n)

for i in range(num_digits ):

result += n[num_digits - i - 1]

return result

_______________

7. (2 points) Question 6

Here, the order of growth should be a function of m and n.

def mystery6(m, n):

result = 0

for i in range(1, m):

j = i * i

while j <= n:

result , j = result + j, j + 1

return result

_______________



3

8. (2 points) Question 7

def mystery7(n):

if n < 1:

return n

def helper(n):

i = 1

while i < n:

i *= 2

return i

return mystery7(n / 2) + mystery7(n / 2) + helper(n - 2)

_______________

9. (2 points) Question 8

Define n to be the length of the input list. How much memory does the following program use as a function of
n?

def weighted_random_choice(lst):

temp = []

for i in range(len(lst)):

temp.extend ([lst[i]] * (i + 1))

return random.choice(temp)

_______________

10. (3 points) Summer 2013 MT2 | Q2

(a) (1 pt) What is the order of growth for a call to fizzle(n)?

def fizzle(n):

if n <= 0:

return n

elif n % 23 == 0:

return n

return fizzle(n - 1)

_______________

(b) (1 pt) What is the order of growth for a call to explode(n)?

def boom(n):

if n == 0: return ’BOOM!’

return boom(n - 1)

def explode(n):

if n == 0:

return boom(n)

i = 0

while i < n:

boom(n)

i += 1

return boom(n)

_______________



4

(c) (1 pt) What is the order of growth for a call to dreams(n)?

def dreams(n):

if n <= 0:

return n

if n > 0:

return n + dreams(n // 2)

_______________

11. (4 points) Summer 2014 MT2 | Q6

Consider the following function (assume that parameter S is a list):

def umatches(S):

result = set()

for item in S:

if item in result:

result.remove(item)

else:

result.add(item)

return result

(a) (1 pt) Fill in the blank: The function umatches returns the set of all

_________________________________________________________________________.

(b) (1 pt) Let’s assume that the operations of adding to, removing from, or checking containment in a set
each take roughly constant time. Give an asymptotic bound (the tightest you can) on the worst-case time
for umatches as a function of N = len(S).

_______________

(c) (1 pt) Suppose that instead of having result be a set, we make it a list (so that it is initialized to []

and we use .append to add an item). What now is the worst-case time bound? You can assume that
.append is a constant-time operation, and .remove and the in operator require time that is Θ(L) in the
worst case, where L is the length of the list operated on. Since we never add an item that is already in
the list, each value appears at most once, just as for a Python set.

_______________

(d) (1 pt) Now suppose that we consider only cases where the number of different values in list S is at most
100, and we again use a list for result. What is the worst-case time now?

_______________

12. (2 points) Summer 2015 MT2 | Q5(d)

def append(link , value):

""" Mutates LINK by adding VALUE to the end of LINK."""

if link.rest is Link.empty:

link.rest = Link(value)

else:

append(link.rest , value)



5

def extend(link1 , link2):

""" Mutates LINK_1 so that all elements of LINK_2

are added to the end of LINK_1.

"""

while link2 is not Link.empty:

append(link1 , link2.first)

link2 = link2.rest

(a) (1 pt) What order of growth describes the runtime of calling append? Give your function in terms of n,
where n is the number of elements in the input link.

_______________

(b) (1 pt) Assuming the two input linked lists both contain n elements, what order of growth best describes
the runtime of calling extend?

_______________

13. (2 points) Summer 2012 Final | Q2

(a) (1 pt) What is the order of growth in n of the runtime of collide, where n is its input?

def collide(n):

lst = []

for i in range(n):

lst.append(i)

if n <= 1:

return 1

if n <= 50:

return collide(n - 1) + collide(n - 2)

elif n > 50:

return collide (50) + collide (49)

_______________

(b) (1 pt) What is the order of growth in n of the runtime of into me, where n is its input?

def crash(n):

if n < 1:

return n

return crash(n - 1) * n

def into_me(n):

lst = []

for i in range(n):

lst.append(i)

sum = 0

for elem in lst:

sum = sum + crash(n) + crash(n)

return sum

_______________



6

14. (4 points) Spring 2014 Final | Q5(c)

Give worst-case asymptotic Θ(·) bounds for the running time of the following code snippets. As a reminder, it
is meaningful to write things with multiple arguments like Θ(a + b), which you can think of as “Θ(N) where
N = a + b.”

(a) (1 pt)

def a(m, n):

for i in range(m):

for j in range(n // 100):

print(’hi’)

_______________

(b) (1 pt)

def b(m, n):

for i in range(m // 3):

print(’hi’)

for j in range(n * 5):

print(’bye’)

_______________

(c) (1 pt)

def d(m, n):

for i in range(m):

j = 0

while j < i:

j = j + 100

_______________

(d) (1 pt)

def f(m):

i = 1

while i < m:

i = i * 2

return i

_______________


